BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25455042)

  • 21. Volatile methylsiloxanes through wastewater treatment plants - A review of levels and implications.
    Capela D; Ratola N; Alves A; Homem V
    Environ Int; 2017 May; 102():9-29. PubMed ID: 28325665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a solid-phase microextraction method for fast analysis of cyclic volatile methylsiloxanes in water.
    Zhang L; Jiang R; Li W; Muir DCG; Zeng EY
    Chemosphere; 2020 Jul; 250():126304. PubMed ID: 32120150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the Behavior of Cyclic Volatile Methylsiloxanes in a Subarctic Freshwater Food Web: A Modeled and Measured Approach.
    Krogseth IS; Undeman E; Evenset A; Christensen GN; Whelan MJ; Breivik K; Warner NA
    Environ Sci Technol; 2017 Nov; 51(21):12489-12497. PubMed ID: 28980809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorinated-Methylsiloxanes in Shengli Oilfield: Their Generation in Oil-Production Wastewater Treatment Plant and Presence in the Surrounding Soils.
    Xu L; Xu S; Zhang Q; Zhang S; Tian Y; Zhao Z; Cai Y
    Environ Sci Technol; 2019 Apr; 53(7):3558-3567. PubMed ID: 30907086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic volatile methylsiloxanes in fish from the Baltic Sea.
    Kierkegaard A; Bignert A; McLachlan MS
    Chemosphere; 2013 Oct; 93(5):774-8. PubMed ID: 23177719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada.
    McGoldrick DJ; Chan C; Drouillard KG; Keir MJ; Clark MG; Backus SM
    Environ Pollut; 2014 Mar; 186():141-8. PubMed ID: 24374064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway.
    Powell DE; Schøyen M; Øxnevad S; Gerhards R; Böhmer T; Koerner M; Durham J; Huff DW
    Sci Total Environ; 2018 May; 622-623():127-139. PubMed ID: 29223074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia.
    Sanchís J; Martínez E; Ginebreda A; Farré M; Barceló D
    Sci Total Environ; 2013 Jan; 443():530-8. PubMed ID: 23220143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements.
    Xu S; Warner N; Bohlin-Nizzetto P; Durham J; McNett D
    Chemosphere; 2019 Aug; 228():460-468. PubMed ID: 31051348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air.
    Krogseth IS; Kierkegaard A; McLachlan MS; Breivik K; Hansen KM; Schlabach M
    Environ Sci Technol; 2013 Jan; 47(1):502-9. PubMed ID: 23194257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chlorinated Methylsiloxanes Generated in the Papermaking Process and Their Fate in Wastewater Treatment Processes.
    Xu L; He X; Zhi L; Zhang C; Zeng T; Cai Y
    Environ Sci Technol; 2016 Dec; 50(23):12732-12741. PubMed ID: 27648832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea.
    Lee S; Moon HB; Song GJ; Ra K; Lee WC; Kannan K
    Sci Total Environ; 2014 Nov; 497-498():106-112. PubMed ID: 25127445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volatile siloxanes in the European arctic: assessment of sources and spatial distribution.
    Warner NA; Evenset A; Christensen G; Gabrielsen GW; Borgå K; Leknes H
    Environ Sci Technol; 2010 Oct; 44(19):7705-10. PubMed ID: 20836489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interference of the gas chromatography- mass spectrometry instrumental background on the determination of trace cyclic volatile methylsiloxanes and exclusion of it by delayed injection.
    Huang G; Li Y; Liu J; Jiang D; Jiang K
    J Chromatogr A; 2024 Jul; 1726():464894. PubMed ID: 38733926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring snow scavenging of two airborne cyclic volatile methylsiloxanes under controlled conditions.
    Xu S; Vogel A
    Chemosphere; 2021 Dec; 285():131291. PubMed ID: 34252803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method.
    Kierkegaard A; Adolfsson-Erici M; McLachlan MS
    Anal Chem; 2010 Nov; 82(22):9573-8. PubMed ID: 20954717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing sampling artifacts in active air sampling methodology for remote monitoring and atmospheric fate assessment of cyclic volatile methylsiloxanes.
    Warner NA; Nikiforov V; Krogseth IS; Bjørneby SM; Kierkegaard A; Bohlin-Nizzetto P
    Chemosphere; 2020 Sep; 255():126967. PubMed ID: 32408127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure.
    Wang R; Moody RP; Koniecki D; Zhu J
    Environ Int; 2009 Aug; 35(6):900-4. PubMed ID: 19361861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment.
    Xu S; Wania F
    Chemosphere; 2013 Oct; 93(5):835-43. PubMed ID: 23177006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Positive vs. false detection: a comparison of analytical methods and performance for analysis of cyclic volatile methylsiloxanes (cVMS) in environmental samples from remote regions.
    Warner NA; Kozerski G; Durham J; Koerner M; Gerhards R; Campbell R; McNett DA
    Chemosphere; 2013 Oct; 93(5):749-56. PubMed ID: 23177710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.