These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 25455436)
1. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations. Galle S; Malcolm P; Derave W; De Clercq D Gait Posture; 2015 Jan; 41(1):246-51. PubMed ID: 25455436 [TBL] [Abstract][Full Text] [Related]
2. Adaptation to walking with an exoskeleton that assists ankle extension. Galle S; Malcolm P; Derave W; De Clercq D Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319 [TBL] [Abstract][Full Text] [Related]
3. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Galle S; Malcolm P; Collins SH; De Clercq D J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684 [TBL] [Abstract][Full Text] [Related]
4. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
5. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
6. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton. Galle S; Malcolm P; Derave W; De Clercq D Eur J Appl Physiol; 2014 Nov; 114(11):2341-51. PubMed ID: 25064193 [TBL] [Abstract][Full Text] [Related]
7. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207 [TBL] [Abstract][Full Text] [Related]
8. Motor modules during adaptation to walking in a powered ankle exoskeleton. Jacobs DA; Koller JR; Steele KM; Ferris DP J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705 [TBL] [Abstract][Full Text] [Related]
9. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. Malcolm P; Derave W; Galle S; De Clercq D PLoS One; 2013; 8(2):e56137. PubMed ID: 23418524 [TBL] [Abstract][Full Text] [Related]
10. Mechanics and energetics of incline walking with robotic ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208 [TBL] [Abstract][Full Text] [Related]
12. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. Kao PC; Lewis CL; Ferris DP J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331 [TBL] [Abstract][Full Text] [Related]
13. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
14. Energetics of Walking With a Robotic Knee Exoskeleton. MacLean MK; Ferris DP J Appl Biomech; 2019 Oct; 35(5):320-326. PubMed ID: 31541067 [TBL] [Abstract][Full Text] [Related]
15. Mechanics and energetics of level walking with powered ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674 [TBL] [Abstract][Full Text] [Related]
16. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns]. Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968 [TBL] [Abstract][Full Text] [Related]
17. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. Etenzi E; Borzuola R; Grabowski AM J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344 [TBL] [Abstract][Full Text] [Related]
18. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy. Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Mooney LM; Herr HM J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449 [TBL] [Abstract][Full Text] [Related]
20. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. Malcolm P; Quesada RE; Caputo JM; Collins SH J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]