BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25455775)

  • 1. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of the diametral compression test for tablets using the flattened disc geometry.
    Mazel V; Guerard S; Croquelois B; Kopp JB; Girardot J; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):669-677. PubMed ID: 27702696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength Simulation of Scored Tablets Based on the Finite Element Method Using an Extreme Vertices Design.
    Hayashi Y; Okada N; Takayama K; Obata Y; Onuki Y
    Chem Pharm Bull (Tokyo); 2018; 66(7):727-731. PubMed ID: 29962456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Stress Simulation of Scored Tablets Based on the Finite Element Method and Experimental Verification.
    Okada N; Hayashi Y; Onuki Y; Miura T; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2016; 64(8):1142-8. PubMed ID: 27477653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile stresses generated in pharmaceutical tablets by opposing compressive line loads.
    Drake KR; Newton JM; Mokhtary-Saghafi S; Davies PN
    Eur J Pharm Sci; 2007 Mar; 30(3-4):273-9. PubMed ID: 17194580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets.
    Castrati L; Mazel V; Busignies V; Diarra H; Rossi A; Colombo P; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):709-716. PubMed ID: 27717917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method.
    Hayashi Y; Miura T; Shimada T; Onuki Y; Obata Y; Takayama K
    J Pharm Sci; 2013 Oct; 102(10):3678-86. PubMed ID: 23897300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the validity of the three-point bending test for pharmaceutical round tablets using finite element method modeling.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2014 Apr; 103(4):1305-8. PubMed ID: 24523243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for the practical determination of the mechanical strength of tablets--from empiricism to science.
    Podczeck F
    Int J Pharm; 2012 Oct; 436(1-2):214-32. PubMed ID: 22776803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial strength test for round flat faced versus capsule shaped bilayer tablets.
    Franck J; Abebe A; Keluskar R; Martin K; Majumdar A; Kottala N; Stamato H
    Pharm Dev Technol; 2015 Mar; 20(2):139-45. PubMed ID: 24219774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method.
    Otoguro S; Hayashi Y; Miura T; Uehara N; Utsumi S; Onuki Y; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2015; 63(11):890-900. PubMed ID: 26279237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determination of the mechanical strength of tablets of different shapes.
    Davies PN; Worthington HE; Podczeck F; Newton JM
    Eur J Pharm Biopharm; 2007 Aug; 67(1):268-76. PubMed ID: 17329086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements.
    Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F
    Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General and mechanistic optimal relationships for tensile strength of doubly convex tablets under diametrical compression.
    Razavi SM; Gonzalez M; CuitiƱo AM
    Int J Pharm; 2015 Apr; 484(1-2):29-37. PubMed ID: 25683146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method.
    Hayashi Y; Otoguro S; Miura T; Onuki Y; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2014; 62(11):1062-72. PubMed ID: 25109913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking patterns of press-coated tablets during the diametral compression test: Influence of the product, geometry and process parameters.
    Picart L; Mazel V; Moulin A; Bourgeaux V; Tchoreloff P
    Int J Pharm; 2022 Jan; 612():121371. PubMed ID: 34902454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.