These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 25455778)
1. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778 [TBL] [Abstract][Full Text] [Related]
2. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Forbes N; Hussain MT; Briuglia ML; Edwards DP; Horst JHT; Szita N; Perrie Y Int J Pharm; 2019 Feb; 556():68-81. PubMed ID: 30503269 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic-assisted bacteriophage encapsulation into liposomes. Leung SSY; Morales S; Britton W; Kutter E; Chan HK Int J Pharm; 2018 Jul; 545(1-2):176-182. PubMed ID: 29729404 [TBL] [Abstract][Full Text] [Related]
4. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Kim BK; Hwang GB; Seu YB; Choi JS; Jin KS; Doh KO Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):1996-2001. PubMed ID: 26112463 [TBL] [Abstract][Full Text] [Related]
5. Scalable microfluidic method for tunable liposomal production by a design of experiment approach. Buttitta G; Bonacorsi S; Barbarito C; Moliterno M; Pompei S; Saito G; Oddone I; Verdone G; Secci D; Raimondi S Int J Pharm; 2024 Sep; 662():124460. PubMed ID: 39004291 [TBL] [Abstract][Full Text] [Related]
6. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: Formulation, cellular uptake and biodistribution investigations. Lou G; Anderluzzi G; Woods S; Roberts CW; Perrie Y Eur J Pharm Biopharm; 2019 Oct; 143():51-60. PubMed ID: 31445156 [TBL] [Abstract][Full Text] [Related]
7. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Sedighi M; Sieber S; Rahimi F; Shahbazi MA; Rezayan AH; Huwyler J; Witzigmann D Drug Deliv Transl Res; 2019 Feb; 9(1):404-413. PubMed ID: 30306459 [TBL] [Abstract][Full Text] [Related]
8. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation. Akar S; Fardindoost S; Hoorfar M Colloids Surf B Biointerfaces; 2024 Jun; 238():113926. PubMed ID: 38677154 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Kastner E; Verma V; Lowry D; Perrie Y Int J Pharm; 2015 May; 485(1-2):122-30. PubMed ID: 25725309 [TBL] [Abstract][Full Text] [Related]
10. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Joshi S; Hussain MT; Roces CB; Anderluzzi G; Kastner E; Salmaso S; Kirby DJ; Perrie Y Int J Pharm; 2016 Nov; 514(1):160-168. PubMed ID: 27863660 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Gkionis L; Aojula H; Harris LK; Tirella A Int J Pharm; 2021 Jul; 604():120711. PubMed ID: 34015381 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic directed formation of liposomes of controlled size. Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256 [TBL] [Abstract][Full Text] [Related]
13. Pegylated liposome encapsulating docetaxel using microfluidic mixing technique: Process optimization and results in breast cancer models. Dacos M; Immordino B; Diroff E; Sicard G; Kosta A; Rodallec A; Giacometti S; Ciccolini J; Fanciullino R Int J Pharm; 2024 May; 656():124091. PubMed ID: 38588758 [TBL] [Abstract][Full Text] [Related]
14. Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations. Hussain MT; Forbes N; Perrie Y; Malik KP; Duru C; Matejtschuk P Int J Pharm; 2020 Jan; 573():118722. PubMed ID: 31705976 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Manufacturing of Liposomes: Development and Optimization by Design of Experiment and Machine Learning. Rebollo R; Oyoun F; Corvis Y; El-Hammadi MM; Saubamea B; Andrieux K; Mignet N; Alhareth K ACS Appl Mater Interfaces; 2022 Sep; 14(35):39736-39745. PubMed ID: 36001743 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. Guimarães Sá Correia M; Briuglia ML; Niosi F; Lamprou DA Int J Pharm; 2017 Jan; 516(1-2):91-99. PubMed ID: 27840162 [TBL] [Abstract][Full Text] [Related]
17. Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. Faneca H; Simões S; Pedroso de Lima MC J Gene Med; 2004 Jun; 6(6):681-92. PubMed ID: 15170739 [TBL] [Abstract][Full Text] [Related]
18. Can We Simplify Liposome Manufacturing Using a Complex DoE Approach? Lindsay S; Tumolva O; Khamiakova T; Coppenolle H; Kovarik M; Shah S; Holm R; Perrie Y Pharmaceutics; 2024 Sep; 16(9):. PubMed ID: 39339196 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of a new lipid/DNA complex showing a selective transfection efficiency in ovarian cancer cells. Caracciolo G; Pozzi D; Caminiti R; Congiu Castellano A Eur Phys J E Soft Matter; 2003 Apr; 10(4):331-6. PubMed ID: 15015096 [TBL] [Abstract][Full Text] [Related]