BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25456397)

  • 1. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model.
    Veeram Reddy SR; Welch TR; Wang J; Bernstein F; Richardson JA; Forbess JM; Nugent AW
    Catheter Cardiovasc Interv; 2014 Feb; 83(3):448-56. PubMed ID: 23592519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future Balloon-Expandable Stents: High or Low-Strength Materials?
    Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B
    Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate.
    Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis.
    Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY
    J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of material characteristics on the mechanical properties of a poly(L-lactide) coronary stent.
    Grabow N; Martin H; Schmitz KP
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():503-5. PubMed ID: 12451906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation and constitutive modelling of biaxially stretched poly(L-lactic acid) sheet for application in coronary stents.
    Blair RW; Dunne NJ; Lennon AB; Menary GH
    J Mech Behav Biomed Mater; 2019 Sep; 97():346-354. PubMed ID: 31153116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries.
    Dinh Nguyen T; Feng G; Yi X; Lyu Y; Lan Z; Xia J; Wu T; Jiang X
    J Biomater Appl; 2018 Aug; 33(2):227-233. PubMed ID: 30096995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment.
    Bobel AC; McHugh PE
    Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of modern and established carotid stents.
    Wissgott C; Schmidt W; Behrens P; Brandt C; Schmitz KP; Andresen R
    Rofo; 2014 Feb; 186(2):157-65. PubMed ID: 23996621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology.
    Blair RW; Dunne NJ; Lennon AB; Menary GH
    PLoS One; 2019; 14(8):e0218768. PubMed ID: 31449528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A predictive study of the mechanical behaviour of coronary stents by computer modelling.
    Migliavacca F; Petrini L; Montanari V; Quagliana I; Auricchio F; Dubini G
    Med Eng Phys; 2005 Jan; 27(1):13-8. PubMed ID: 15604000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents.
    Wang Y; Wu H; Fan S; Wu J; Yang S
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion.
    Grabow N; Bünger CM; Schultze C; Schmohl K; Martin DP; Williams SF; Sternberg K; Schmitz KP
    Ann Biomed Eng; 2007 Dec; 35(12):2031-8. PubMed ID: 17846893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.