BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25456454)

  • 1. Selective gas transfer through binary polymeric systems based on block-copolymers.
    Beckman IN; Teplyakov VV
    Adv Colloid Interface Sci; 2015 Aug; 222():70-8. PubMed ID: 25456454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.
    Malykh OV; Golub AY; Teplyakov VV
    Adv Colloid Interface Sci; 2011 May; 164(1-2):89-99. PubMed ID: 21094931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer.
    Nafisi V; Hägg MB
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15643-52. PubMed ID: 25158027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas permeability of the film of block and graft copolymers of polydimethylsiloxane and poly(gamma-benzyl L-glutamate).
    Kang IK; Ito Y; Sisido M; Imanishi Y
    Biomaterials; 1988 Jul; 9(4):349-55. PubMed ID: 2463853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of membrane inlet mass spectrometric measurements of dissolved gases: differences in the responses of polymer and nano-composite membranes to variations in ionic strength.
    Miranda LD; Byrne RH; Short RT; Bell RJ
    Talanta; 2013 Nov; 116():217-22. PubMed ID: 24148396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers.
    Fischer HR; Tempelaars K; Kerpershoek A; Dingemans T; Iqbal M; Lonkhuyzen Hv; Iwanowsky B; Semprimoschnig C
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2218-25. PubMed ID: 20690681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membranes Based on PTMSP/PVTMS Blends for Membrane Contactor Applications.
    Kalmykov D; Balynin A; Yushkin A; Grushevenko E; Sokolov S; Malakhov A; Volkov A; Bazhenov S
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material Design Concepts and Gas Separation Mechanism of CO
    Rahman MM
    Macromol Rapid Commun; 2023 Jul; 44(14):e2300114. PubMed ID: 37132516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organosilica-Modified Multiblock Copolymers for Membrane Gas Separation.
    Davletbaeva IM; Alentiev AY; Faizulina ZZ; Zaripov II; Nikiforov RY; Parfenov VV; Arkhipov AV
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing Ether Oxygen Content in Polymers for Membrane CO
    Liu J; Zhang G; Clark K; Lin H
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10933-10940. PubMed ID: 30794744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes.
    Gan Q; Zou Y; Rooney D; Nancarrow P; Thompson J; Liang L; Lewis M
    Adv Colloid Interface Sci; 2011 May; 164(1-2):45-55. PubMed ID: 21333963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.
    Raaijmakers MJ; Ogieglo W; Wiese M; Wessling M; Nijmeijer A; Benes NE
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26977-88. PubMed ID: 26574774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-based technologies for biogas separations.
    Basu S; Khan AL; Cano-Odena A; Liu C; Vankelecom IF
    Chem Soc Rev; 2010 Feb; 39(2):750-68. PubMed ID: 20111791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA block copolymers: functional materials for nanoscience and biomedicine.
    Schnitzler T; Herrmann A
    Acc Chem Res; 2012 Sep; 45(9):1419-30. PubMed ID: 22726237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block.
    Rahman MM
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective permeation of hydrogen gas using cellulose nanofibril film.
    Fukuzumi H; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of CO
    Kim D; Hossain I; Husna A; Kim TH
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34200603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.