These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25456740)

  • 1. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression.
    Dentice M; Ambrosio R; Damiano V; Sibilio A; Luongo C; Guardiola O; Yennek S; Zordan P; Minchiotti G; Colao A; Marsili A; Brunelli S; Del Vecchio L; Larsen PR; Tajbakhsh S; Salvatore D
    Cell Metab; 2014 Dec; 20(6):1038-48. PubMed ID: 25456740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration.
    Dentice M; Marsili A; Ambrosio R; Guardiola O; Sibilio A; Paik JH; Minchiotti G; DePinho RA; Fenzi G; Larsen PR; Salvatore D
    J Clin Invest; 2010 Nov; 120(11):4021-30. PubMed ID: 20978344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells.
    Ambrosio R; De Stefano MA; Di Girolamo D; Salvatore D
    Mol Cell Endocrinol; 2017 Dec; 459():79-83. PubMed ID: 28630021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic control of type 2 and 3 deiodinases in myogenesis: role of Lysine-specific Demethylase enzyme and FoxO3.
    Ambrosio R; Damiano V; Sibilio A; De Stefano MA; Avvedimento VE; Salvatore D; Dentice M
    Nucleic Acids Res; 2013 Apr; 41(6):3551-62. PubMed ID: 23396445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deiodinases and stem cells: an intimate relationship.
    Salvatore D
    J Endocrinol Invest; 2018 Jan; 41(1):59-66. PubMed ID: 28853031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal.
    Gopinath SD; Webb AE; Brunet A; Rando TA
    Stem Cell Reports; 2014 Apr; 2(4):414-26. PubMed ID: 24749067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running.
    Fujimaki S; Hidaka R; Asashima M; Takemasa T; Kuwabara T
    J Biol Chem; 2014 Mar; 289(11):7399-412. PubMed ID: 24482229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.
    Mitchell KJ; Pannérec A; Cadot B; Parlakian A; Besson V; Gomes ER; Marazzi G; Sassoon DA
    Nat Cell Biol; 2010 Mar; 12(3):257-66. PubMed ID: 20118923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dlk1 is necessary for proper skeletal muscle development and regeneration.
    Waddell JN; Zhang P; Wen Y; Gupta SK; Yevtodiyenko A; Schmidt JV; Bidwell CA; Kumar A; Kuang S
    PLoS One; 2010 Nov; 5(11):e15055. PubMed ID: 21124733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis.
    Straughn AR; Hindi SM; Xiong G; Kumar A
    J Mol Cell Biol; 2019 Jan; 11(1):53-66. PubMed ID: 30239789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.
    Chen JF; Tao Y; Li J; Deng Z; Yan Z; Xiao X; Wang DZ
    J Cell Biol; 2010 Sep; 190(5):867-79. PubMed ID: 20819939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMP signaling regulates satellite cell-dependent postnatal muscle growth.
    Stantzou A; Schirwis E; Swist S; Alonso-Martin S; Polydorou I; Zarrouki F; Mouisel E; Beley C; Julien A; Le Grand F; Garcia L; Colnot C; Birchmeier C; Braun T; Schuelke M; Relaix F; Amthor H
    Development; 2017 Aug; 144(15):2737-2747. PubMed ID: 28694257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle stem cell fate is controlled by the cell-polarity protein Scrib.
    Ono Y; Urata Y; Goto S; Nakagawa S; Humbert PO; Li TS; Zammit PS
    Cell Rep; 2015 Feb; 10(7):1135-48. PubMed ID: 25704816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells.
    Fujimaki S; Seko D; Kitajima Y; Yoshioka K; Tsuchiya Y; Masuda S; Ono Y
    Stem Cells; 2018 Feb; 36(2):278-285. PubMed ID: 29139178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration.
    Mokalled MH; Johnson AN; Creemers EE; Olson EN
    Genes Dev; 2012 Jan; 26(2):190-202. PubMed ID: 22279050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells.
    De Luca G; Ferretti R; Bruschi M; Mezzaroma E; Caruso M
    Stem Cells; 2013 Nov; 31(11):2478-91. PubMed ID: 23897741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements.
    Lepper C; Conway SJ; Fan CM
    Nature; 2009 Jul; 460(7255):627-31. PubMed ID: 19554048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration.
    Dumont NA; Rudnicki MA
    Methods Mol Biol; 2017; 1560():179-188. PubMed ID: 28155153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to collecting satellite cells from adult skeletal muscles on the basis of their stress tolerance.
    Shigemoto T; Kuroda Y; Wakao S; Dezawa M
    Stem Cells Transl Med; 2013 Jul; 2(7):488-98. PubMed ID: 23748608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRMT7 Preserves Satellite Cell Regenerative Capacity.
    Blanc RS; Vogel G; Chen T; Crist C; Richard S
    Cell Rep; 2016 Feb; 14(6):1528-1539. PubMed ID: 26854227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.