These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 25456993)
1. Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Tan C; Zhang Y; Abbas S; Feng B; Zhang X; Xia S Colloids Surf B Biointerfaces; 2014 Nov; 123():692-700. PubMed ID: 25456993 [TBL] [Abstract][Full Text] [Related]
2. Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Xia S; Tan C; Zhang Y; Abbas S; Feng B; Zhang X; Qin F Colloids Surf B Biointerfaces; 2015 Apr; 128():172-180. PubMed ID: 25747311 [TBL] [Abstract][Full Text] [Related]
3. Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Tan C; Xue J; Lou X; Abbas S; Guan Y; Feng B; Zhang X; Xia S Food Funct; 2014 Jun; 5(6):1232-40. PubMed ID: 24714683 [TBL] [Abstract][Full Text] [Related]
4. Carotenoid-containing unilamellar liposomes loaded with glutathione: a model to study hydrophobic-hydrophilic antioxidant interaction. Junghans A; Sies H; Stahl W Free Radic Res; 2000 Dec; 33(6):801-8. PubMed ID: 11237102 [TBL] [Abstract][Full Text] [Related]
5. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. Huo T; Ferruzzi MG; Schwartz SJ; Failla ML J Agric Food Chem; 2007 Oct; 55(22):8950-7. PubMed ID: 17927194 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of phytochemical bioaccessibility from plant-based foods using excipient emulsions: impact of lipid type on carotenoid solubilization from spinach. Yuan X; Liu X; McClements DJ; Cao Y; Xiao H Food Funct; 2018 Aug; 9(8):4352-4365. PubMed ID: 30043000 [TBL] [Abstract][Full Text] [Related]
7. Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. Tan C; Xue J; Abbas S; Feng B; Zhang X; Xia S J Agric Food Chem; 2014 Jul; 62(28):6726-35. PubMed ID: 24745755 [TBL] [Abstract][Full Text] [Related]
8. Influence of soy and whey protein, gelatin and sodium caseinate on carotenoid bioaccessibility. Iddir M; Dingeo G; Porras Yaruro JF; Hammaz F; Borel P; Schleeh T; Desmarchelier C; Larondelle Y; Bohn T Food Funct; 2020 Jun; 11(6):5446-5459. PubMed ID: 32490498 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of carotenoid esters into liposomes. Pintea A; Diehl HA; Momeu C; Aberle L; Socaciu C Biophys Chem; 2005 Oct; 118(1):7-14. PubMed ID: 16002203 [TBL] [Abstract][Full Text] [Related]
10. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Woodall AA; Britton G; Jackson MJ Biochim Biophys Acta; 1997 Oct; 1336(3):575-86. PubMed ID: 9367186 [TBL] [Abstract][Full Text] [Related]
11. Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables. Goñi I; Serrano J; Saura-Calixto F J Agric Food Chem; 2006 Jul; 54(15):5382-7. PubMed ID: 16848521 [TBL] [Abstract][Full Text] [Related]
12. The solubilisation pattern of lutein, zeaxanthin, canthaxanthin and beta-carotene differ characteristically in liposomes, liver microsomes and retinal epithelial cells. Shafaa MW; Diehl HA; Socaciu C Biophys Chem; 2007 Sep; 129(2-3):111-9. PubMed ID: 17566630 [TBL] [Abstract][Full Text] [Related]
13. Improvement of carotenoid bioaccessibility from spinach by co-ingesting with excipient nanoemulsions: impact of the oil phase composition. Yao K; McClements DJ; Xiang J; Zhang Z; Cao Y; Xiao H; Liu X Food Funct; 2019 Sep; 10(9):5302-5311. PubMed ID: 31432852 [TBL] [Abstract][Full Text] [Related]
14. Effect of microfluidization on bioaccessibility of carotenoids from Chlorella ellipsoidea during simulated digestion. Cha KH; Koo SY; Song DG; Pan CH J Agric Food Chem; 2012 Sep; 60(37):9437-42. PubMed ID: 22946699 [TBL] [Abstract][Full Text] [Related]
15. HPLC-UV/Vis-APCI-MS/MS Determination of Major Carotenoids and Their Bioaccessibility from "Delica" ( Bergantin C; Maietti A; Tedeschi P; Font G; Manyes L; Marchetti N Molecules; 2018 Oct; 23(11):. PubMed ID: 30373266 [TBL] [Abstract][Full Text] [Related]
16. Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Salvia-Trujillo L; Verkempinck SH; Sun L; Van Loey AM; Grauwet T; Hendrickx ME Food Chem; 2017 Aug; 229():653-662. PubMed ID: 28372227 [TBL] [Abstract][Full Text] [Related]
17. Carotenoid incorporation into natural membranes from artificial carriers: liposomes and beta-cyclodextrins. Lancrajan I; Diehl HA; Socaciu C; Engelke M; Zorn-Kruppa M Chem Phys Lipids; 2001 Jul; 112(1):1-10. PubMed ID: 11518567 [TBL] [Abstract][Full Text] [Related]
18. In vitro bioaccessibility and uptake of β-carotene from encapsulated carotenoids from mango by-products in a coupled gastrointestinal digestion/Caco-2 cell model. Cabezas-Terán K; Grootaert C; Ortiz J; Donoso S; Ruales J; Van Bockstaele F; Van Camp J; Van de Wiele T Food Res Int; 2023 Feb; 164():112301. PubMed ID: 36737902 [TBL] [Abstract][Full Text] [Related]
19. Effect of divalent minerals on the bioaccessibility of pure carotenoids and on physical properties of gastro-intestinal fluids. Corte-Real J; Iddir M; Soukoulis C; Richling E; Hoffmann L; Bohn T Food Chem; 2016 Apr; 197(Pt A):546-53. PubMed ID: 26616987 [TBL] [Abstract][Full Text] [Related]
20. Influence of methylcellulose on attributes of β-carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Mun S; Park S; Kim YR; McClements DJ Food Res Int; 2016 Sep; 87():18-24. PubMed ID: 29606239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]