These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25457292)

  • 1. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.
    Nacev A; Weinberg IN; Stepanov PY; Kupfer S; Mair LO; Urdaneta MG; Shimoji M; Fricke ST; Shapiro B
    Nano Lett; 2015 Jan; 15(1):359-64. PubMed ID: 25457292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Ultralight Magnets via Orientational Arrangement of Ferromagnetic Nanoparticles within Aerogel Hosts.
    Li Y; Liu Q; Hess AJ; Mi S; Liu X; Chen Z; Xie Y; Smalyukh II
    ACS Nano; 2019 Dec; 13(12):13875-13883. PubMed ID: 31790585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic Actuation System for Focused Capturing of Magnetic Particles With a Half of Static Saddle Potential Energy Configuration.
    Le TA; Bui MP; Yoon J
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):869-880. PubMed ID: 32816673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Guiding with Permanent Magnets: Concept, Realization and Applications to Nanoparticles and Cells.
    Blümler P
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.
    Salazar-Enríquez CD; Restrepo J; Restrepo-Parra E
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4697-702. PubMed ID: 22905518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid.
    Lyutyy TV; Denisov SI; Reva VV; Bystrik YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042312. PubMed ID: 26565245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body.
    Shapiro B
    J Magn Magn Mater; 2009 May; 321(10):1594. PubMed ID: 20165553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping magnetic fields to direct therapy to ears and eyes.
    Shapiro B; Kulkarni S; Nacev A; Sarwar A; Preciado D; Depireux DA
    Annu Rev Biomed Eng; 2014 Jul; 16():455-81. PubMed ID: 25014789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Spin Stabilized Magnetic Levitation.
    Rusconi CC; Pöchhacker V; Kustura K; Cirac JI; Romero-Isart O
    Phys Rev Lett; 2017 Oct; 119(16):167202. PubMed ID: 29099212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Slow Relaxation in a Metal-Organic Framework Made of Chains of Ferromagnetically Coupled Single-Molecule Magnets.
    Huang G; Fernandez-Garcia G; Badiane I; Camarra M; Freslon S; Guillou O; Daiguebonne C; Totti F; Cador O; Guizouarn T; Le Guennic B; Bernot K
    Chemistry; 2018 May; 24(27):6983-6991. PubMed ID: 29436739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.
    Peng T; Sun Q; Zhao J; Jiang F; Li L; Xu Q; Herlach F
    Rev Sci Instrum; 2013 Dec; 84(12):125112. PubMed ID: 24387473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible chains of ferromagnetic nanoparticles.
    Townsend J; Burtovyy R; Galabura Y; Luzinov I
    ACS Nano; 2014 Jul; 8(7):6970-8. PubMed ID: 24950006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Trapping of Bacteria at Low Magnetic Fields.
    Wang ZM; Wu RG; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Jun; 6():26945. PubMed ID: 27254771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.
    Sarwar A; Nemirovski A; Shapiro B
    J Magn Magn Mater; 2012 Mar; 324(5):742-754. PubMed ID: 23335834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthodontic magnets. A study of force and field pattern, biocompatibility and clinical effects.
    Bondemark L
    Swed Dent J Suppl; 1994; 99():1-148. PubMed ID: 7801229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation magneto-statics and illusions for magnets.
    Sun F; He S
    Sci Rep; 2014 Oct; 4():6593. PubMed ID: 25307319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis Modeling in Iron-Dominated Magnets Based on a Multi-Layered NARX Neural Network Approach.
    Amodeo M; Arpaia P; Buzio M; Di Capua V; Donnarumma F
    Int J Neural Syst; 2021 Sep; 31(9):2150033. PubMed ID: 34296651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Vella D; du Pontavice E; Hall CL; Goriely A
    Proc Math Phys Eng Sci; 2014 Feb; 470(2162):20130609. PubMed ID: 24511257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of hysteresis rods in small spacecraft attitude stabilization.
    Farrahi A; Sanz-Andrés Á
    ScientificWorldJournal; 2013; 2013():459573. PubMed ID: 24501579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of pulsed electromagnetic fields combined with a static magnetic intramedullary implant on the repair of bone defects: A preliminary study.
    Bao Z; Fan M; Ma L; Duan Q; Jiang W
    Electromagn Biol Med; 2019; 38(3):210-217. PubMed ID: 31155966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.