These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25457946)

  • 1. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.
    Azevedo RF; Souza RK; Braga GU; Rangel DE
    Fungal Biol; 2014 Dec; 118(12):990-5. PubMed ID: 25457946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses.
    Dias LP; Souza RKF; Pupin B; Rangel DEN
    Fungal Biol; 2021 Nov; 125(11):891-904. PubMed ID: 34649676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conidial mass production of entomopathogenic fungi and tolerance of their mass-produced conidia to UV-B radiation and heat.
    Rangel DEN; Acheampong MA; Bignayan HG; Golez HG; Roberts DW
    Fungal Biol; 2023 Dec; 127(12):1524-1533. PubMed ID: 38097326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat.
    Santos MP; Dias LP; Ferreira PC; Pasin LA; Rangel DE
    J Invertebr Pathol; 2011 Nov; 108(3):209-13. PubMed ID: 21925183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Xenon Test Chamber Q-SUN
    Dias LP; Araújo CAS; Pupin B; Ferreira PC; Braga GÚL; Rangel DEN
    Fungal Biol; 2018 Jun; 122(6):592-601. PubMed ID: 29801804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance.
    Rangel DE; Butler MJ; Torabinejad J; Anderson AJ; Braga GU; Day AW; Roberts DW
    J Invertebr Pathol; 2006 Nov; 93(3):170-82. PubMed ID: 16934287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324).
    Rangel DEN; Roberts DW
    J Invertebr Pathol; 2018 Sep; 157():32-35. PubMed ID: 30017952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide.
    Araújo CAS; Dias LP; Ferreira PC; Mittmann J; Pupin B; Brancini GTP; Braga GÚL; Rangel DEN
    Fungal Biol; 2018 Jun; 122(6):621-628. PubMed ID: 29801807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi.
    Licona-Juárez KC; Andrade EP; Medina HR; Oliveira JNS; Sosa-Gómez DR; Rangel DEN
    Fungal Biol; 2023; 127(7-8):1250-1258. PubMed ID: 37495315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes.
    Pereira-Junior RA; Huarte-Bonnet C; Paixão FRS; Roberts DW; Luz C; Pedrini N; Fernandes ÉKK
    J Appl Microbiol; 2018 Jul; 125(1):159-171. PubMed ID: 29473986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress.
    Rangel DE; Fernandes EK; Dettenmaier SJ; Roberts DW
    J Basic Microbiol; 2010 Aug; 50(4):344-50. PubMed ID: 20586069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi.
    Ansari MA; Butt TM
    J Appl Microbiol; 2011 Jun; 110(6):1460-9. PubMed ID: 21395946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of entomopathogenic hypocrealean fungi against Periplaneta americana.
    Hubner-Campos RF; Leles RN; Rodrigues J; Luz C
    Parasitol Int; 2013 Dec; 62(6):517-21. PubMed ID: 23899866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virulence of the insect-pathogenic fungi
    Rangel DEN; Bignayan HG; Golez HG; Keyser CA; Evans EW; Roberts DW
    Bull Entomol Res; 2021 Oct; ():1-8. PubMed ID: 34620258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus.
    Rangel DE; Alston DG; Roberts DW
    Mycol Res; 2008 Nov; 112(Pt 11):1355-61. PubMed ID: 18947989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance.
    Rangel DE; Fernandes ÉK; Anderson AJ; Roberts DW
    Fungal Biol; 2012 Mar; 116(3):438-42. PubMed ID: 22385625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses.
    Bernardo CDC; Pereira-Junior RA; Luz C; Mascarin GM; Kamp Fernandes ÉK
    Fungal Biol; 2020 Aug; 124(8):714-722. PubMed ID: 32690253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins.
    Rangel DE; Braga GU; Anderson AJ; Roberts DW
    J Invertebr Pathol; 2005 Feb; 88(2):116-25. PubMed ID: 15766928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria.
    Fernandes EK; Rangel DE; Moraes AM; Bittencourt VR; Roberts DW
    J Invertebr Pathol; 2008 May; 98(1):69-78. PubMed ID: 18096184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi.
    Andersen M; Magan N; Mead A; Chandler D
    Environ Microbiol; 2006 Sep; 8(9):1625-34. PubMed ID: 16913922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.