BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25458009)

  • 21. Direct and indirect association of the small GTPase ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extracts.
    Saitoh H; Cooke CA; Burgess WH; Earnshaw WC; Dasso M
    Mol Biol Cell; 1996 Sep; 7(9):1319-34. PubMed ID: 8885229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts.
    Nicolás FJ; Zhang C; Hughes M; Goldberg MW; Watton SJ; Clarke PR
    J Cell Sci; 1997 Dec; 110 ( Pt 24)():3019-30. PubMed ID: 9365272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts.
    Halpin D; Kalab P; Wang J; Weis K; Heald R
    PLoS Biol; 2011 Dec; 9(12):e1001225. PubMed ID: 22215983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran.
    Ohba T; Nakamura M; Nishitani H; Nishimoto T
    Science; 1999 May; 284(5418):1356-8. PubMed ID: 10334990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B.
    Nemergut ME; Mizzen CA; Stukenberg T; Allis CD; Macara IG
    Science; 2001 May; 292(5521):1540-3. PubMed ID: 11375490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle.
    Deschamps T; Bazot Q; Leske DM; MacLeod R; Mompelat D; Tafforeau L; Lotteau V; Maréchal V; Baillie GS; Gruffat H; Wilson JB; Manet E
    J Gen Virol; 2017 Feb; 98(2):251-265. PubMed ID: 28284242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell cycle-dependent binding modes of the ran exchange factor RCC1 to chromatin.
    Bierbaum M; Bastiaens PI
    Biophys J; 2013 Apr; 104(8):1642-51. PubMed ID: 23601311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ran localizes around the microtubule spindle in vivo during mitosis in Drosophila embryos.
    Trieselmann N; Wilde A
    Curr Biol; 2002 Jul; 12(13):1124-9. PubMed ID: 12121620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of a RanGTP-regulated gradient in mitotic somatic cells.
    Kaláb P; Pralle A; Isacoff EY; Heald R; Weis K
    Nature; 2006 Mar; 440(7084):697-701. PubMed ID: 16572176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells.
    Hitakomate E; Hood FE; Sanderson HS; Clarke PR
    BMC Cell Biol; 2010 Jun; 11():43. PubMed ID: 20565941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo.
    Li HY; Wirtz D; Zheng Y
    J Cell Biol; 2003 Mar; 160(5):635-44. PubMed ID: 12604592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ran-binding protein 1 (RanBP1) forms a ternary complex with Ran and karyopherin beta and reduces Ran GTPase-activating protein (RanGAP) inhibition by karyopherin beta.
    Lounsbury KM; Macara IG
    J Biol Chem; 1997 Jan; 272(1):551-5. PubMed ID: 8995296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1.
    Klebe C; Bischoff FR; Ponstingl H; Wittinghofer A
    Biochemistry; 1995 Jan; 34(2):639-47. PubMed ID: 7819259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of importin-beta in coupling Ran to downstream targets in microtubule assembly.
    Wiese C; Wilde A; Moore MS; Adam SA; Merdes A; Zheng Y
    Science; 2001 Jan; 291(5504):653-6. PubMed ID: 11229403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase.
    Clarke PR; Klebe C; Wittinghofer A; Karsenti E
    J Cell Sci; 1995 Mar; 108 ( Pt 3)():1217-25. PubMed ID: 7622606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis.
    Chen T; Muratore TL; Schaner-Tooley CE; Shabanowitz J; Hunt DF; Macara IG
    Nat Cell Biol; 2007 May; 9(5):596-603. PubMed ID: 17435751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The MRN-CtIP pathway is required for metaphase chromosome alignment.
    Rozier L; Guo Y; Peterson S; Sato M; Baer R; Gautier J; Mao Y
    Mol Cell; 2013 Mar; 49(6):1097-107. PubMed ID: 23434370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo.
    Guarguaglini G; Renzi L; D'Ottavio F; Di Fiore B; Casenghi M; Cundari E; Lavia P
    Cell Growth Differ; 2000 Aug; 11(8):455-65. PubMed ID: 10965850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation.
    Dasso M; Seki T; Azuma Y; Ohba T; Nishimoto T
    EMBO J; 1994 Dec; 13(23):5732-44. PubMed ID: 7988569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The RCC1 protein interacts with Ran, RanBP1, hsc70, and a 340-kDa protein in Xenopus extracts.
    Saitoh H; Dasso M
    J Biol Chem; 1995 May; 270(18):10658-63. PubMed ID: 7738003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.