BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25458153)

  • 1. Finite element modeling of superelastic nickel-titanium orthodontic wires.
    Naceur IB; Charfi A; Bouraoui T; Elleuch K
    J Biomech; 2014 Nov; 47(15):3630-8. PubMed ID: 25458153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study.
    Razali MF; Mahmud AS; Mokhtar N
    J Mech Behav Biomed Mater; 2018 Jan; 77():234-241. PubMed ID: 28954242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.
    Liaw YC; Su YY; Lai YL; Lee SY
    Am J Orthod Dentofacial Orthop; 2007 May; 131(5):578.e12-8. PubMed ID: 17482074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.
    Segal N; Hell J; Berzins DW
    Am J Orthod Dentofacial Orthop; 2009 Jun; 135(6):764-70. PubMed ID: 19524836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load-deflection characteristics of superelastic and thermal nickel-titanium wires.
    Gatto E; Matarese G; Di Bella G; Nucera R; Borsellino C; Cordasco G
    Eur J Orthod; 2013 Feb; 35(1):115-23. PubMed ID: 22023884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations.
    Nucera R; Gatto E; Borsellino C; Aceto P; Fabiano F; Matarese G; Perillo L; Cordasco G
    Angle Orthod; 2014 May; 84(3):541-7. PubMed ID: 24067050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature- and deflection- dependences of orthodontic force with Ni-Ti wires.
    Yanaru K; Yamaguchi K; Kakigawa H; Kozono Y
    Dent Mater J; 2003 Jun; 22(2):146-59. PubMed ID: 12873118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire.
    Garrec P; Tavernier B; Jordan L
    Eur J Orthod; 2005 Aug; 27(4):402-7. PubMed ID: 16043477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire.
    Suzuki A; Kanetaka H; Shimizu Y; Tomizuka R; Hosoda H; Miyazaki S; Okuno O; Igarashi K; Mitani H
    Angle Orthod; 2006 Nov; 76(6):1041-6. PubMed ID: 17090162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of short-term temperature changes on superelastic nickel-titanium archwires activated in orthodontic bending.
    Meling TR; Odegaard J
    Am J Orthod Dentofacial Orthop; 2001 Mar; 119(3):263-73. PubMed ID: 11244421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial arch wires for tooth alignment during orthodontic treatment with fixed appliances.
    Jian F; Lai W; Furness S; McIntyre GT; Millett DT; Hickman J; Wang Y
    Cochrane Database Syst Rev; 2013 Apr; 2013(4):CD007859. PubMed ID: 23633347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on new superelastic NiTi orthodontic wire. (Part 1) Tensile and bend test (author's transl)].
    Watanabe K
    Shika Rikogaku Zasshi; 1982 Jan; 23(61):47-57. PubMed ID: 6951898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires.
    Khier SE; Brantley WA; Fournelle RA
    Am J Orthod Dentofacial Orthop; 1991 Apr; 99(4):310-8. PubMed ID: 2008890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of initial incisor crowding alignment in the periodontally reduced mandible using the finite element method.
    Baghdadi D; Reimann S; Keilig L; Reichert C; Jäger A; Bourauel C
    J Orofac Orthop; 2019 Jul; 80(4):184-193. PubMed ID: 31139844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Eulerian buckling test for orthodontic wires.
    De Santis R; Dolci F; Laino A; Martina R; Ambrosio L; Nicolais L
    Eur J Orthod; 2008 Apr; 30(2):190-8. PubMed ID: 18263890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term temperature changes influence the force exerted by superelastic nickel-titanium archwires activated in orthodontic bending.
    Meling TR; Odegaard J
    Am J Orthod Dentofacial Orthop; 1998 Nov; 114(5):503-9. PubMed ID: 9810045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the superelasticity of different nickel-titanium orthodontic archwires and the loss of their properties by heat treatment.
    Bellini H; Moyano J; Gil J; Puigdollers A
    J Mater Sci Mater Med; 2016 Oct; 27(10):158. PubMed ID: 27623709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of coated superelastic archwires in conventional and self-ligating orthodontic brackets.
    Elayyan F; Silikas N; Bearn D
    Am J Orthod Dentofacial Orthop; 2010 Feb; 137(2):213-7. PubMed ID: 20152677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Load-deflection characteristics of superelastic nickel-titanium orthodontic wires.
    Wilkinson PD; Dysart PS; Hood JA; Herbison GP
    Am J Orthod Dentofacial Orthop; 2002 May; 121(5):483-95. PubMed ID: 12045766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures.
    Pun DK; Berzins DW
    Dent Mater; 2008 Feb; 24(2):221-7. PubMed ID: 17624421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.