These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 25458275)
1. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Jaušovec D; Vogrinčič R; Kokol V Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275 [TBL] [Abstract][Full Text] [Related]
2. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786 [TBL] [Abstract][Full Text] [Related]
3. Rate-Limited Reaction in TEMPO/Laccase/O Jiang J; Chen H; Yu J; Liu L; Fan Y; Saito T; Isogai A Macromol Rapid Commun; 2021 Feb; 42(3):e2000501. PubMed ID: 33225568 [TBL] [Abstract][Full Text] [Related]
4. Laccase complex with polyvinylamine bearing grafted TEMPO is a cellulose adhesion primer. Liu J; Pelton R; Obermeyer JM; Esser A Biomacromolecules; 2013 Aug; 14(8):2953-60. PubMed ID: 23841801 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading. Sanchez-Salvador JL; Xu H; Balea A; Blanco A; Negro C Int J Biol Macromol; 2024 Mar; 261(Pt 2):129612. PubMed ID: 38272426 [TBL] [Abstract][Full Text] [Related]
6. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers. Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806 [TBL] [Abstract][Full Text] [Related]
7. A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation. Yu Y; Wang Q; Yuan J; Fan X; Wang P Carbohydr Polym; 2016 Nov; 153():463-470. PubMed ID: 27561518 [TBL] [Abstract][Full Text] [Related]
9. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Shinoda R; Saito T; Okita Y; Isogai A Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990 [TBL] [Abstract][Full Text] [Related]
10. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Soni B; Hassan EB; Schilling MW; Mahmoud B Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625 [TBL] [Abstract][Full Text] [Related]
11. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers. Milanovic J; Schiehser S; Milanovic P; Potthast A; Kostic M Carbohydr Polym; 2013 Oct; 98(1):444-50. PubMed ID: 23987366 [TBL] [Abstract][Full Text] [Related]
13. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. Liu P; Oksman K; Mathew AP J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127 [TBL] [Abstract][Full Text] [Related]
14. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Ishii D; Saito T; Isogai A Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299 [TBL] [Abstract][Full Text] [Related]
15. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Wu J; Zhu W; Shi X; Li Q; Huang C; Tian Y; Wang S Carbohydr Polym; 2020 May; 236():115999. PubMed ID: 32172833 [TBL] [Abstract][Full Text] [Related]
16. TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Isogai T; Saito T; Isogai A Biomacromolecules; 2010 Jun; 11(6):1593-9. PubMed ID: 20469944 [TBL] [Abstract][Full Text] [Related]
17. Cellulose nanofibers production using a set of recombinant enzymes. Rossi BR; Pellegrini VOA; Cortez AA; Chiromito EMS; Carvalho AJF; Pinto LO; Rezende CA; Mastelaro VR; Polikarpov I Carbohydr Polym; 2021 Mar; 256():117510. PubMed ID: 33483031 [TBL] [Abstract][Full Text] [Related]
18. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. Carlsson DO; Hua K; Forsgren J; Mihranyan A Int J Pharm; 2014 Jan; 461(1-2):74-81. PubMed ID: 24291076 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of primary hydroxyl groups in chitooligomer by a laccase-TEMPO system and physico-chemical characterisation of oxidation products. Pei J; Yin Y; Shen Z; Bu X; Zhang F Carbohydr Polym; 2016 Jan; 135():234-8. PubMed ID: 26453873 [TBL] [Abstract][Full Text] [Related]
20. New strategy for grafting hydrophobization of lignocellulosic fiber materials with octadecylamine using a laccase/TEMPO system. Dong A; Teklu KM; Wang W; Fan X; Wang Q; Ardanuy M; Dong Z Int J Biol Macromol; 2020 Oct; 160():192-200. PubMed ID: 32450328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]