BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25458299)

  • 1. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.
    Breitwieser D; Kriechbaum M; Ehmann HM; Monkowius U; Coseri S; Sacarescu L; Spirk S
    Carbohydr Polym; 2015 Feb; 116():261-6. PubMed ID: 25458299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the formation of Bi
    Reishofer D; Ehmann HM; Amenitsch H; Gspan C; Fischer R; Plank H; Trimmel G; Spirk S
    Carbohydr Polym; 2017 May; 164():294-300. PubMed ID: 28325328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application.
    Chen M; Shen X; Liu P; Wei Y; Meng Y; Zheng G; Diao G
    Carbohydr Polym; 2015 Mar; 119():26-34. PubMed ID: 25563941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ZnO/trimethylsilyl cellulose nano-composite coating on anti-UV and anti-fungal properties of papers.
    Chokboribal J; Amornkitbamrung L; Somchit W; Suchaiya V; Khamweera P; Pankaew P
    Sci Rep; 2023 Nov; 13(1):20714. PubMed ID: 38001117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles.
    George J; Kumar R; Sajeevkumar VA; Ramana KV; Rajamanickam R; Abhishek V; Nadanasabapathy S; Siddaramaiah
    Carbohydr Polym; 2014 May; 105():285-92. PubMed ID: 24708982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of silica-gold nanocomposites and their porous nanoparticles by an in-situ approach.
    Kumar A; Pushparaj VL; Murugesan S; Viswanathan G; Nalamasu R; Linhardt RJ; Nalamasu O; Ajayan PM
    Langmuir; 2006 Oct; 22(21):8631-4. PubMed ID: 17014096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Biological Approach for the Synthesis of Bismuth Nanoparticles: Using Thiolated M13 Phage as Scaffold.
    Vera-Robles LI; Escobar-Alarcón L; Picquart M; Hernández-Pozos JL; Haro-Poniatowski E
    Langmuir; 2016 Apr; 32(13):3199-206. PubMed ID: 27010536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of cellulose/silver nanocomposite fibers.
    Li R; He M; Li T; Zhang L
    Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.
    Hu J; Hong Y; Muratore C; Su M; Voevodin AA
    Nanoscale; 2011 Sep; 3(9):3700-4. PubMed ID: 21796304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves.
    Silva AR; Unali G
    Nanotechnology; 2011 Aug; 22(31):315605. PubMed ID: 21747160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Ehmann HM; Ribitsch V; Stana-Kleinschek K
    Carbohydr Polym; 2013 Mar; 93(1):191-8. PubMed ID: 23465919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine).
    Akamatsu K; Shimada M; Tsuruoka T; Nawafune H; Fujii S; Nakamura Y
    Langmuir; 2010 Jan; 26(2):1254-9. PubMed ID: 19817404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Bi, C and N) codoped TiO2 nanoparticles.
    Lv K; Zuo H; Sun J; Deng K; Liu S; Li X; Wang D
    J Hazard Mater; 2009 Jan; 161(1):396-401. PubMed ID: 18457917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous synthesis and assembly of gold nanoparticles in cuttlebone-derived organic matrix: a "green" pathway for gold nanocomposite.
    Jia X; Qian W
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4370-6. PubMed ID: 19049027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield synthesis of ultrathin and uniform Bi₂WO₆ square nanoplates benefitting from photocatalytic reduction of CO₂ into renewable hydrocarbon fuel under visible light.
    Zhou Y; Tian Z; Zhao Z; Liu Q; Kou J; Chen X; Gao J; Yan S; Zou Z
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3594-601. PubMed ID: 21815668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: as an electroactive material for analysis of heavy metals.
    Sahoo PK; Panigrahy B; Sahoo S; Satpati AK; Li D; Bahadur D
    Biosens Bioelectron; 2013 May; 43():293-6. PubMed ID: 23334218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel self-assembling nanoparticle of Ag-Bi with high reactive efficiency.
    Gong J; Lee CS; Chang YY; Chang YS
    Chem Commun (Camb); 2014 Aug; 50(62):8597-600. PubMed ID: 24956185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation.
    Nazari P; Faramarzi MA; Sepehrizadeh Z; Mofid MR; Bazaz RD; Shahverdi AR
    IET Nanobiotechnol; 2012 Jun; 6(2):58-62. PubMed ID: 22559708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step synthesis of graphene/polyallylamine-Au nanocomposites and their electrocatalysis toward oxygen reduction.
    Zhang Q; Ren Q; Miao Y; Yuan J; Wang K; Li F; Han D; Niu L
    Talanta; 2012 Jan; 89():391-5. PubMed ID: 22284507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.