BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25458353)

  • 1. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase.
    Faccio G; Arvas M; Thöny-Meyer L; Saloheimo M
    J Inorg Biochem; 2013 Apr; 121():37-45. PubMed ID: 23333757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration.
    Nakayama T; Yonekura-Sakakibara K; Sato T; Kikuchi S; Fukui Y; Fukuchi-Mizutani M; Ueda T; Nakao M; Tanaka Y; Kusumi T; Nishino T
    Science; 2000 Nov; 290(5494):1163-6. PubMed ID: 11073455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function correlations in tyrosinases.
    Kanteev M; Goldfeder M; Fishman A
    Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homology modeling and dynamics study of aureusidin synthase--an important enzyme in aurone biosynthesis of snapdragon flower.
    Elumalai P; Liu HL
    Int J Biol Macromol; 2011 Aug; 49(2):134-42. PubMed ID: 21470561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology models of four Agaricus bisporus tyrosinases.
    Inlow JK
    Int J Biol Macromol; 2012 Jan; 50(1):283-93. PubMed ID: 22119959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F; McDougall C; Degnan BM
    BMC Evol Biol; 2013 May; 13():96. PubMed ID: 23634722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation.
    Fujieda N; Yabuta S; Ikeda T; Oyama T; Muraki N; Kurisu G; Itoh S
    J Biol Chem; 2013 Jul; 288(30):22128-40. PubMed ID: 23749993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of polyphenol oxidase from plant and fungal species.
    Marusek CM; Trobaugh NM; Flurkey WH; Inlow JK
    J Inorg Biochem; 2006 Jan; 100(1):108-23. PubMed ID: 16332393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.