These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25458353)
1. Type-3 copper proteins: recent advances on polyphenol oxidases. Kaintz C; Mauracher SG; Rompel A Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353 [TBL] [Abstract][Full Text] [Related]
2. Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Goldfeder M; Kanteev M; Adir N; Fishman A Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929 [TBL] [Abstract][Full Text] [Related]
3. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Panis F; Kampatsikas I; Bijelic A; Rompel A Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350 [TBL] [Abstract][Full Text] [Related]
4. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Olivares C; Solano F Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457 [TBL] [Abstract][Full Text] [Related]
6. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Molitor C; Mauracher SG; Rompel A Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571 [TBL] [Abstract][Full Text] [Related]
7. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase. Faccio G; Arvas M; Thöny-Meyer L; Saloheimo M J Inorg Biochem; 2013 Apr; 121():37-45. PubMed ID: 23333757 [TBL] [Abstract][Full Text] [Related]
8. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Solem E; Tuczek F; Decker H Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413 [TBL] [Abstract][Full Text] [Related]
9. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Nakayama T; Yonekura-Sakakibara K; Sato T; Kikuchi S; Fukui Y; Fukuchi-Mizutani M; Ueda T; Nakao M; Tanaka Y; Kusumi T; Nishino T Science; 2000 Nov; 290(5494):1163-6. PubMed ID: 11073455 [TBL] [Abstract][Full Text] [Related]
10. Structure-function correlations in tyrosinases. Kanteev M; Goldfeder M; Fishman A Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241 [TBL] [Abstract][Full Text] [Related]
11. Homology modeling and dynamics study of aureusidin synthase--an important enzyme in aurone biosynthesis of snapdragon flower. Elumalai P; Liu HL Int J Biol Macromol; 2011 Aug; 49(2):134-42. PubMed ID: 21470561 [TBL] [Abstract][Full Text] [Related]
16. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies. Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of polyphenol oxidase from plant and fungal species. Marusek CM; Trobaugh NM; Flurkey WH; Inlow JK J Inorg Biochem; 2006 Jan; 100(1):108-23. PubMed ID: 16332393 [TBL] [Abstract][Full Text] [Related]
18. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Kampatsikas I; Bijelic A; Pretzler M; Rompel A Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733 [TBL] [Abstract][Full Text] [Related]
19. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Kampatsikas I; Rompel A Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057 [TBL] [Abstract][Full Text] [Related]