These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25458461)

  • 1. Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell.
    Pareek A; Paik P; Borse PH
    Langmuir; 2014 Dec; 30(51):15540-9. PubMed ID: 25458461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell.
    Pareek A; Paik P; Borse PH
    Dalton Trans; 2016 Jul; 45(27):11120-8. PubMed ID: 27327992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting.
    Guo CX; Xie J; Yang H; Li CM
    Adv Sci (Weinh); 2015 Dec; 2(12):1500135. PubMed ID: 27980921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface defect passivation of Ta
    Li F; Jian J; Xu Y; Liu W; Ye Q; Feng F; Li C; Jia L; Wang H
    J Chem Phys; 2020 Jul; 153(2):024705. PubMed ID: 32668911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.
    Mali SS; Desai SK; Dalavi DS; Betty CA; Bhosale PN; Patil PS
    Photochem Photobiol Sci; 2011 Oct; 10(10):1652-8. PubMed ID: 21799995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor.
    Fan L; Wang P; Guo Q; Lei Y; Li M; Han H; Zhao H; Yang D; Zheng Z; Yang J
    Nanotechnology; 2015 Aug; 26(33):335606. PubMed ID: 26221785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of ZnO/ZnS/CdS/CuInS₂ core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light.
    Yu YX; Ouyang WX; Liao ZT; Du BB; Zhang WD
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8467-74. PubMed ID: 24758144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu
    Jiang K; Wang W; Wang J; Zhu T; Yao L; Cheng Y; Wang Y; Liang Y; Fu J
    Dalton Trans; 2020 Jul; 49(27):9282-9293. PubMed ID: 32578622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of reduced graphene oxide in the critical components of a CdS-sensitized TiO2 -based photoelectrochemical cell.
    Selvaraj J; Gupta S; DelaCruz S; Subramanian VR
    Chemphyschem; 2014 Jul; 15(10):2010-8. PubMed ID: 24976600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterostructured Au NPs/CdS/LaBTC MOFs Photoanode for Efficient Photoelectrochemical Water Splitting: Stability Enhancement via CdSe QDs to 2D-CdS Nanosheets Transformation.
    Vaddipalli SR; Sanivarapu SR; Vengatesan S; Lawrence JB; Eashwar M; Sreedhar G
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23049-59. PubMed ID: 27532805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation.
    Yoshii M; Murata Y; Nakabayashi Y; Ikeda T; Fujishima M; Tada H
    J Colloid Interface Sci; 2016 Jul; 474():34-40. PubMed ID: 27100903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stable photoelectrochemical cells for hydrogen production using a SnO
    Basu K; Zhang H; Zhao H; Bhattacharya S; Navarro-Pardo F; Datta PK; Jin L; Sun S; Vetrone F; Rosei F
    Nanoscale; 2018 Aug; 10(32):15273-15284. PubMed ID: 30067257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary Cu
    Jathar SB; Rondiya SR; Jadhav YA; Nilegave DS; Cross RW; Barma SV; Nasane MP; Gaware SA; Bade BR; Jadkar SR; Funde AM; Dzade NY
    Chem Mater; 2021 Mar; 33(6):1983-1993. PubMed ID: 33840893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterojunction Photoanode of Atomic-Layer-Deposited MoS
    Ho TA; Bae C; Joe J; Yang H; Kim S; Park JH; Shin H
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37586-37594. PubMed ID: 31580636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydrothermally grown CdS nanograin-sensitized 1D Zr:α-Fe
    Mahadik MA; Subramanian A; Ryu J; Cho M; Jang JS
    Dalton Trans; 2017 Feb; 46(7):2377-2386. PubMed ID: 28139791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon/Organic Heterojunction for Photoelectrochemical Energy Conversion Photoanode with a Record Photovoltage.
    Cui W; Wu S; Chen F; Xia Z; Li Y; Zhang XH; Song T; Lee ST; Sun B
    ACS Nano; 2016 Oct; 10(10):9411-9419. PubMed ID: 27617584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation.
    Jiang F; Gunawan ; Harada T; Kuang Y; Minegishi T; Domen K; Ikeda S
    J Am Chem Soc; 2015 Oct; 137(42):13691-7. PubMed ID: 26479423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation.
    Choi Y; Baek M; Zhang Z; Dao VD; Choi HS; Yong K
    Nanoscale; 2015 Oct; 7(37):15291-9. PubMed ID: 26327311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H
    Ma Y; Liu Y; Bian Y; Zhu A; Yang Y; Pan J
    J Colloid Interface Sci; 2018 May; 518():140-148. PubMed ID: 29453104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.