BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25458680)

  • 1. Absorption characteristics of elemental mercury in mercury chloride solutions.
    Ma Y; Xu H; Qu Z; Yan N; Wang W
    J Environ Sci (China); 2014 Nov; 26(11):2257-65. PubMed ID: 25458680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on removal of elemental mercury in flue gas using fenton solution.
    Liu Y; Wang Y; Wang Q; Pan J; Zhang Y; Zhou J; Zhang J
    J Hazard Mater; 2015 Jul; 292():164-72. PubMed ID: 25804791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on mercury removal method from flue gas in the presence of sulfur dioxide.
    Ma Y; Qu Z; Xu H; Wang W; Yan N
    J Hazard Mater; 2014 Aug; 279():289-95. PubMed ID: 25072135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting.
    Liu Z; Wang D; Peng B; Chai L; Liu H; Yang S; Yang B; Xiang K; Liu C
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22494-22502. PubMed ID: 28803273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system.
    Wang Y; Liu Y; Wu Z; Mo J; Cheng B
    J Hazard Mater; 2010 Nov; 183(1-3):902-7. PubMed ID: 20739119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions.
    Li G; Shen B; Li Y; Zhao B; Wang F; He C; Wang Y; Zhang M
    J Hazard Mater; 2015 Nov; 298():162-9. PubMed ID: 26051992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of additives on Hg2+ reduction and precipitation inhibited by sodium dithiocarbamate in simulated flue gas desulfurization solutions.
    Lu R; Hou J; Xu J; Tang T; Xu X
    J Hazard Mater; 2011 Nov; 196():160-5. PubMed ID: 21955657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.
    Tang H; Duan Y; Zhu C; Cai T; Li C; Cai L
    Chemosphere; 2017 Oct; 184():711-719. PubMed ID: 28641222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.
    Ning P; Guo X; Wang X; Wang P; Ma Y; Lan Y
    Environ Technol; 2015; 36(21):2691-701. PubMed ID: 25965547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of Hg(II) by foam fractionation in the acidic range: effect of complexation.
    Moussavi M; Javidnejad M
    J Hazard Mater; 2007 Jun; 144(1-2):187-93. PubMed ID: 17116364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas.
    Chi Y; Yan N; Qu Z; Qiao S; Jia J
    J Hazard Mater; 2009 Jul; 166(2-3):776-81. PubMed ID: 19153004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hg⁰ removal from flue gas by ionic liquid/H₂O₂.
    Cheng G; Bai B; Zhang Q; Cai M
    J Hazard Mater; 2014 Sep; 280():767-73. PubMed ID: 25240646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide.
    Qu Z; Yan N; Liu P; Guo Y; Jia J
    Environ Sci Technol; 2010 May; 44(10):3889-94. PubMed ID: 20408537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide.
    Liu H; You Z; Yang S; Liu C; Xie X; Xiang K; Wang X; Yan X
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6735-6744. PubMed ID: 30632039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the solvation of HgCl2, HgClOH, Hg(OH)2 and HgCl3(-): a density functional theory cluster approach.
    Castro L; Dommergue A; Renard A; Ferrari C; Ramirez-Solis A; Maron L
    Phys Chem Chem Phys; 2011 Oct; 13(37):16772-9. PubMed ID: 21860852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capture of oxidized mercury from simulated desulphurization aqueous solutions.
    Ochoa-González R; Díaz-Somoano M; Martínez-Tarazona MR
    J Environ Manage; 2013 May; 120():55-60. PubMed ID: 23500649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of elemental Mercury from flue gas using wheat straw chars modified by K
    Zhou J; Liu Y; Pan J
    Environ Technol; 2017 Dec; 38(23):3047-3054. PubMed ID: 28118784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel mercury control technology for solid waste incineration: sodium tetrasulfide (STS) as mercury capturing agent.
    Liu Y; Xie S; Li Y; Liu Y
    Environ Sci Technol; 2007 Mar; 41(5):1735-9. PubMed ID: 17396668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hg(0) oxidative absorption by K(2)S(2)O(8) solution catalyzed by Ag(+) and Cu(2+).
    Xu X; Ye Q; Tang T; Wang D
    J Hazard Mater; 2008 Oct; 158(2-3):410-6. PubMed ID: 18353543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.