These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25458687)

  • 1. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.
    Yan M; Yu L; Zhang L; Guo Y; Dai K; Chen Y
    J Environ Sci (China); 2014 Nov; 26(11):2315-21. PubMed ID: 25458687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice.
    Mehra P; Pandey BK; Giri J
    Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.
    Ali MA; Louche J; Legname E; Duchemin M; Plassard C
    Tree Physiol; 2009 Dec; 29(12):1587-97. PubMed ID: 19840995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of various pH values of the medium on some phosphorus compounds in Candida utilis].
    Lirova SA; Iungnikel' F
    Mikrobiologiia; 1973; 42(5):940-1. PubMed ID: 4366031
    [No Abstract]   [Full Text] [Related]  

  • 5. [Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity].
    Wu Q; Xia R; Zou Y
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):685-9. PubMed ID: 16836102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil.
    Wang J; Zhao YG; Maqbool F
    Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Candida mycoderma growth inhibition with phenol and the autoselection of resistent forms under continuous pH-stat cultivation].
    Bril'kov AV; Pechurkin NS
    Mikrobiologiia; 1979; 48(4):711-5. PubMed ID: 39228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice.
    Tian J; Wang C; Zhang Q; He X; Whelan J; Shou H
    J Integr Plant Biol; 2012 Sep; 54(9):631-9. PubMed ID: 22805094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 'known' genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils.
    Lidbury IDEA; Fraser T; Murphy ARJ; Scanlan DJ; Bending GD; Jones AME; Moore JD; Goodall A; Tibbett M; Hammond JP; Wellington EMH
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28419748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon, nitrogen and phosphorus mineralization in two soils amended with distillery yeast.
    Rezende LA; Assis LC; Nahas E
    Bioresour Technol; 2004 Sep; 94(2):159-67. PubMed ID: 15158508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils.
    Garg S; Bahl GS
    Bioresour Technol; 2008 Sep; 99(13):5773-7. PubMed ID: 18325765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols.
    Louche J; Ali MA; Cloutier-Hurteau B; Sauvage FX; Quiquampoix H; Plassard C
    FEMS Microbiol Ecol; 2010 Aug; 73(2):323-35. PubMed ID: 20533944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops.
    Saha S; Mina BL; Gopinath KA; Kundu S; Gupta HS
    Bioresour Technol; 2008 Apr; 99(6):1750-7. PubMed ID: 17507214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of cultivation conditions on the cytochrome system of Candida mycoderma yeasts].
    Eremina SS; Sokolov GB
    Mikrobiologiia; 1978; 47(4):600-4. PubMed ID: 703641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transitional state of Candida utilis chemostat culture after shock caused by a low pH value of the medium during 1 generation].
    Rabotnova IL; Lirova SA; Rizenberg D; Shul'govskaia EM; Ibragimova SI
    Mikrobiologiia; 1976; 45(6):1005-11. PubMed ID: 13273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.
    de Almeida AF; Tauk-Tornisielo SM; Carmona EC
    Biomed Res Int; 2013; 2013():435818. PubMed ID: 24350270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi.
    Tibbett M
    Microbiol Res; 2002; 157(3):221-31. PubMed ID: 12398293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of industrial waste products on phosphorus mobilisation and biomass production in abattoir wastewater irrigated soil.
    Seshadri B; Kunhikrishnan A; Bolan N; Naidu R
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10013-21. PubMed ID: 24862480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment I. Differential growth response, P-efficiency characteristics and P-remobilization.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1008-23. PubMed ID: 19903223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.