These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25458755)

  • 1. Biointerfaces: global Perspectives. Preface.
    Chen H; Brash J
    Colloids Surf B Biointerfaces; 2014 Dec; 124():1. PubMed ID: 25458755
    [No Abstract]   [Full Text] [Related]  

  • 2. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.
    Xu Y; Takai M; Ishihara K
    Ann Biomed Eng; 2010 Jun; 38(6):1938-53. PubMed ID: 20358288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting.
    Muthiah M; Park IK; Cho CS
    Biotechnol Adv; 2013 Dec; 31(8):1224-36. PubMed ID: 23528431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface chemistry and entrapment of magnesium nanoparticles into polymeric micelles: a highly biocompatible tool for photothermal therapy.
    Locatelli E; Matteini P; Sasdelli F; Pucci A; Chiariello M; Molinari V; Pini R; Comes Franchini M
    Chem Commun (Camb); 2014 Jul; 50(58):7783-6. PubMed ID: 24901445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of bulk and surface properties of some biocompatible hydrophobic polymers on the stability of methylene chloride-in-water mini-emulsions used to prepare nanoparticles by emulsification-solvent evaporation.
    Babak VG; Baros F; Boulanouar O; Boury F; Fromm M; Kildeeva NR; Ubrich N; Maincent P
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):194-207. PubMed ID: 17600692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces.
    Kim SN; Slocik JM; Naik RR
    Small; 2010 Sep; 6(18):1992-5. PubMed ID: 20721951
    [No Abstract]   [Full Text] [Related]  

  • 7. Next generation polymer nanocomposites.
    Heijkants RG; Batenburg LF
    Med Device Technol; 2006 Sep; 17(7):10-2. PubMed ID: 17039950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymeric nanoparticles based drug delivery systems.
    Kumari A; Yadav SK; Yadav SC
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):1-18. PubMed ID: 19782542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon-polymer hybrid materials for drug delivery.
    McInnes SJ; Voelcker NH
    Future Med Chem; 2009 Sep; 1(6):1051-74. PubMed ID: 21425994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of DNA block copolymer assemblies loaded with nanoparticles.
    Chen XJ; Hickey RJ; Park SJ
    Methods Mol Biol; 2013; 1025():207-24. PubMed ID: 23918340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Modification of resin using reactive polymeric nanoparticles].
    Szalóki M; Bukovinszki K; Uveges A; Hegedus C; Borbély J
    Fogorv Sz; 2007 Dec; 100(6):307-12. PubMed ID: 18361204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles.
    Cade D; Ramus E; Rinaudo M; Auzély-Velty R; Delair T; Hamaide T
    Biomacromolecules; 2004; 5(3):922-7. PubMed ID: 15132682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of surface roughness of polymers on thrombus formation].
    Chepurov AK; Mertsalova NN; Dubovich TI; Ifashkin GV; Chekanova VD
    Med Tekh; 1977; (6):25-9. PubMed ID: 145536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-step process to produce surface-functionalized polymeric nanoparticles.
    Sussman EM; Clarke MB; Shastri VP
    Langmuir; 2007 Nov; 23(24):12275-9. PubMed ID: 17963413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning from "coffee rings": ordered structures enabled by controlled evaporative self-assembly.
    Han W; Lin Z
    Angew Chem Int Ed Engl; 2012 Feb; 51(7):1534-46. PubMed ID: 22311809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of novel biointerfaces (I). Blood compatibility of poly(2-methoxyethyl acrylate).
    Tanaka M
    Biomed Mater Eng; 2004; 14(4):427-38. PubMed ID: 15472391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities.
    Cheng G; Xue H; Zhang Z; Chen S; Jiang S
    Angew Chem Int Ed Engl; 2008; 47(46):8831-4. PubMed ID: 18846530
    [No Abstract]   [Full Text] [Related]  

  • 19. Laser fabrication of large-scale nanoparticle arrays for sensing applications.
    Kuznetsov AI; Evlyukhin AB; Gonçalves MR; Reinhardt C; Koroleva A; Arnedillo ML; Kiyan R; Marti O; Chichkov BN
    ACS Nano; 2011 Jun; 5(6):4843-9. PubMed ID: 21539373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible polymer nanoparticles for intra-cellular applications.
    Johansson EM; Bradley M
    Chimia (Aarau); 2012; 66(4):237-40. PubMed ID: 22613158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.