These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25458763)

  • 1. Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation.
    López FA; Alguacil FJ; Rodríguez O; Sierra MJ; Millán R
    Waste Manag; 2015 Jan; 35():301-6. PubMed ID: 25458763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching behaviour of hazardous demolition waste.
    Roussat N; Méhu J; Abdelghafour M; Brula P
    Waste Manag; 2008 Nov; 28(11):2032-40. PubMed ID: 18160273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes.
    Randall P; Chattopadhyay S
    J Hazard Mater; 2004 Oct; 114(1-3):211-23. PubMed ID: 15511593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of international trends in mercury management and available options for permanent or long-term mercury storage.
    Lee KJ; Lee TG
    J Hazard Mater; 2012 Nov; 241-242():1-13. PubMed ID: 23040312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of mercury-containing wastes using sulfide.
    Piao H; Bishop PL
    Environ Pollut; 2006 Feb; 139(3):498-506. PubMed ID: 16099084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury leaching characteristics of waste treatment residues generated from various sources in Korea.
    Cho JH; Eom Y; Park JM; Lee SB; Hong JH; Lee TG
    Waste Manag; 2013 Jul; 33(7):1675-81. PubMed ID: 23680269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.
    Zhang S; Zhang X; Xiong Y; Wang G; Zheng N
    Waste Manag Res; 2015 Feb; 33(2):183-90. PubMed ID: 25568090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.
    Lee SW; Lowry GV; Hsu-Kim H
    Environ Sci Process Impacts; 2016 Feb; 18(2):176-89. PubMed ID: 26745831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of metacinnabar by milling of liquid mercury and elemental sulfur for long term mercury storage.
    López FA; López-Delgado A; Padilla I; Tayibi H; Alguacil FJ
    Sci Total Environ; 2010 Sep; 408(20):4341-5. PubMed ID: 20673963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur polymer solidification/stabilization of elemental mercury waste.
    Fuhrmann M; Melamed D; Kalb PD; Adams JW; Milian LW
    Waste Manag; 2002; 22(3):327-33. PubMed ID: 11952179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerns on liquid mercury and mercury-containing wastes: a review of the treatment technologies for the safe storage.
    Rodríguez O; Padilla I; Tayibi H; López-Delgado A
    J Environ Manage; 2012 Jun; 101():197-205. PubMed ID: 22446074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.
    Tunsu C; Ekberg C; Foreman M; Retegan T
    Waste Manag; 2015 Feb; 36():289-96. PubMed ID: 25443097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy.
    Santoro A; Terzano R; Blo G; Fiore S; Mangold S; Ruggiero P
    J Synchrotron Radiat; 2010 Mar; 17(2):187-92. PubMed ID: 20157270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process.
    Park HS; Rhee SW
    Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.
    Navarro-Blasco I; Duran A; Pérez-Nicolás M; Fernández JM; Sirera R; Alvarez JI
    J Environ Manage; 2015 Aug; 159():288-300. PubMed ID: 26024992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury.
    Stetson SJ; Gray JE; Wanty RB; Macalady DL
    Environ Sci Technol; 2009 Oct; 43(19):7331-6. PubMed ID: 19848142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization and solidification of elemental mercury for safe disposal and/or long-term storage.
    Lee TG; Eom Y; Lee CH; Song KS
    J Air Waste Manag Assoc; 2011 Oct; 61(10):1057-62. PubMed ID: 22070038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of FGD gypsum for its disposal in landfills using amorphous aluminium oxide as a fluoride retention additive.
    Alvarez-Ayuso E; Querol X
    Chemosphere; 2007 Sep; 69(2):295-302. PubMed ID: 17509651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal.
    Alvarez-Ayuso E; Querol X
    Chemosphere; 2008 Mar; 71(1):140-6. PubMed ID: 18063008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the analytic hierarchy process to compare alternatives for the long-term management of surplus mercury.
    Randall P; Brown L; Deschaine L; Dimarzio J; Kaiser G; Vierow J
    J Environ Manage; 2004 May; 71(1):35-43. PubMed ID: 15084358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.