BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25458784)

  • 1. Tunable aggregation by competing biomolecular interactions.
    Duncan GA; Bevan MA
    Langmuir; 2014 Dec; 30(50):15253-60. PubMed ID: 25458784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusing colloidal probes of protein-carbohydrate interactions.
    Eichmann SL; Meric G; Swavola JC; Bevan MA
    Langmuir; 2013 Feb; 29(7):2299-310. PubMed ID: 23330828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy.
    Cummins BM; Garza JT; Coté GL
    Anal Chem; 2013 Jun; 85(11):5397-404. PubMed ID: 23627407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chain and pore-blocking effects on matrix degradation in protein-loaded microgels.
    Widenbring R; Frenning G; Malmsten M
    Biomacromolecules; 2014 Oct; 15(10):3671-8. PubMed ID: 25144139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay.
    Locke AK; Cummins BM; Abraham AA; Coté GL
    Anal Chem; 2014 Sep; 86(18):9091-7. PubMed ID: 25133655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time evaluation of composition and structure of concanavalin A adsorbed on a polystyrene surface.
    Mielczarski JA; Dong J; Mielczarski E
    J Phys Chem B; 2008 Apr; 112(16):5228-37. PubMed ID: 18376883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "On-off" switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing.
    Huang J; Zhang L; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Mar; 41():430-5. PubMed ID: 23026685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of degree-of-branching and molecular mass on the interaction between dextran and Concanavalin A in hydrogel preparations intended for insulin release.
    Benzeval I; Bowyer A; Hubble J
    Eur J Pharm Biopharm; 2012 Jan; 80(1):143-8. PubMed ID: 22000996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative estimation of interaction between carbohydrates and concanavalin A by surface plasmon resonance biosensor.
    Goto S; Masuda K; Miura M; Kanazawa K; Sasaki M; Masui M; Shiramizu M; Terada H; Chuman H
    Chem Pharm Bull (Tokyo); 2002 Apr; 50(4):445-9. PubMed ID: 11963988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming the aggregation problem: a new type of fluorescent ligand for ConA-based glucose sensing.
    Cummins BM; Li M; Locke AK; Birch DJS; Vigh G; Coté GL
    Biosens Bioelectron; 2015 Jan; 63():53-60. PubMed ID: 25058939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concanavalin A for in vivo glucose sensing: a biotoxicity review.
    Ballerstadt R; Evans C; McNichols R; Gowda A
    Biosens Bioelectron; 2006 Aug; 22(2):275-84. PubMed ID: 16488598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction.
    Zhang J; Wang C; Chen S; Yuan D; Zhong X
    Enzyme Microb Technol; 2013 Mar; 52(3):134-40. PubMed ID: 23410923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance imaging studies of protein-carbohydrate interactions.
    Smith EA; Thomas WD; Kiessling LL; Corn RM
    J Am Chem Soc; 2003 May; 125(20):6140-8. PubMed ID: 12785845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous temperature-dependence of the specific interaction of concanavalin A with a multivalent ligand-dextran.
    Waseem A; Salahuddin A
    Biochim Biophys Acta; 1983 Jul; 746(1-2):65-71. PubMed ID: 19455757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactomannan thin films as supports for the immobilization of Concanavalin A and/or dengue viruses.
    Valenga F; Petri DF; Lucyszyn N; Jó TA; Sierakowski MR
    Int J Biol Macromol; 2012 Jan; 50(1):88-94. PubMed ID: 22020153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico and experimental studies of concanavalin A: insights into its antiproliferative activity and apoptotic mechanism.
    Liu Z; Li X; Ding X; Yang Y
    Appl Biochem Biotechnol; 2010 Sep; 162(1):134-45. PubMed ID: 19593672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of solute multivalence on the evaluation of binding constants by biosensor technology: studies with concanavalin A and interleukin-6 as partitioning proteins.
    Kalinin NL; Ward LD; Winzor DJ
    Anal Biochem; 1995 Jul; 228(2):238-44. PubMed ID: 8572301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enzyme-free quartz crystal microbalance biosensor for sensitive glucose detection in biological fluids based on glucose/dextran displacement approach.
    Tang D; Li Q; Tang J; Su B; Chen G
    Anal Chim Acta; 2011 Feb; 686(1-2):144-9. PubMed ID: 21237320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation of temperature and concanavalin A concentratration effects for glucose determination by the viscometric affinity assay.
    Beyer U; Ehwald R
    Biotechnol Prog; 2000; 16(6):1119-23. PubMed ID: 11101343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.