These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25458784)

  • 21. Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces.
    Pallarola D; von Bildering C; Pietrasanta LI; Queralto N; Knoll W; Battaglini F; Azzaroni O
    Phys Chem Chem Phys; 2012 Aug; 14(31):11027-39. PubMed ID: 22766969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheological characterisation of dextran-concanavalin A mixtures as a basis for a self-regulated drug delivery device.
    Taylor MJ; Tanna S; Sahota TS; Voermans B
    Eur J Pharm Biopharm; 2006 Jan; 62(1):94-100. PubMed ID: 16183269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral.
    Oliveira MD; Correia MT; Coelho LC; Diniz FB
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):13-9. PubMed ID: 18573642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticle-mediated monitoring of carbohydrate-lectin interactions using Transient Magnetic Birefringence.
    Köber M; Moros M; Franco Fraguas L; Grazú V; de la Fuente JM; Luna M; Briones F
    Anal Chem; 2014 Dec; 86(24):12159-65. PubMed ID: 25417550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific adhesion of carbohydrate hydrogel particles in competition with multivalent inhibitors evaluated by AFM.
    Pussak D; Ponader D; Mosca S; Pompe T; Hartmann L; Schmidt S
    Langmuir; 2014 Jun; 30(21):6142-50. PubMed ID: 24806833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of SERS active nanoparticle assemblies via specific carbohydrate-protein interactions.
    Craig D; Simpson J; Faulds K; Graham D
    Chem Commun (Camb); 2013 Jan; 49(1):30-2. PubMed ID: 23114655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids.
    Aslan K; Lakowicz JR; Geddes CD
    Anal Chim Acta; 2004 Jul; 517(1-2):139-144. PubMed ID: 31896834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of glucose-responsive bioconjugated gel particles using surfactant-free emulsion polymerization.
    Kawamura A; Hata Y; Miyata T; Uragami T
    Colloids Surf B Biointerfaces; 2012 Nov; 99():74-81. PubMed ID: 22078928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence emission and polarization for analyzing binding of ruthenium metalloglycocluster to lectin and tetanus toxin C-fragment.
    Okada T; Makino T; Minoura N
    Bioconjug Chem; 2009 Jul; 20(7):1296-8. PubMed ID: 19537755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glucose-responsive composite microparticles based on chitosan, concanavalin A and dextran for insulin delivery.
    Yin R; Han J; Zhang J; Nie J
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):483-8. PubMed ID: 20074919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemically monitoring the binding of concanavalin A and ovalbumin.
    Sugawara K; Yugami A; Kadoya T; Hosaka K
    Talanta; 2011 Jul; 85(1):425-9. PubMed ID: 21645720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glucose-responsive microhydrogels based on methacrylate modified dextran/concanavalin A for insulin delivery.
    Yin R; Tong Z; Yang D; Nie J
    J Control Release; 2011 Nov; 152 Suppl 1():e163-5. PubMed ID: 22195824
    [No Abstract]   [Full Text] [Related]  

  • 33. Electrochemical assay of concanavalin A-ovalbumin binding on magnetic beads.
    Sugawara K; Yugami A; Kadoya T; Kuramitz H; Hosaka K
    Analyst; 2012 Aug; 137(16):3781-6. PubMed ID: 22760477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences.
    Jang H; Lee C; Hwang Y; Lee SJ
    Dalton Trans; 2021 Dec; 50(48):17817-17831. PubMed ID: 34806716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurements of FRET in a glucose-sensitive affinity system with frequency-domain lifetime spectroscopy.
    Liang F; Pan T; Sevick-Muraca EM
    Photochem Photobiol; 2005; 81(6):1386-94. PubMed ID: 16120004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational and experimental investigations of mono-septanoside binding by Concanavalin A: correlation of ligand stereochemistry to enthalpies of binding.
    Duff MR; Fyvie WS; Markad SD; Frankel AE; Kumar CV; Gascón JA; Peczuh MW
    Org Biomol Chem; 2011 Jan; 9(1):154-64. PubMed ID: 21085738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concanavalin A-conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes.
    Shao X; Liu Q; Zhang C; Zheng X; Chen J; Zha Y; Qian Y; Zhang X; Zhang Q; Jiang X
    J Microencapsul; 2013; 30(8):780-6. PubMed ID: 23631383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode.
    Labib M; Hedström M; Amin M; Mattiasson B
    Anal Chim Acta; 2010 Feb; 659(1-2):194-200. PubMed ID: 20103124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid phase synthesis of oligomannopeptoids that mimic the concanavalin A-binding trimannoside.
    Yuasa H; Kamata Y; Kurono S; Hashimoto H
    Bioorg Med Chem Lett; 1998 Aug; 8(16):2139-44. PubMed ID: 9873501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorometric determination of sugars using fluorescein-labeled concanavalin A-glycogen conjugates.
    Sato K; Anzai J
    Anal Bioanal Chem; 2006 Mar; 384(6):1297-301. PubMed ID: 16477422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.