BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25458854)

  • 1. Optimizing and developing a continuous separation system for the wet process separation of aluminum and polyethylene in aseptic composite packaging waste.
    Yan D; Peng Z; Liu Y; Li L; Huang Q; Xie M; Wang Q
    Waste Manag; 2015 Jan; 35():21-8. PubMed ID: 25458854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent effect in the polyethylene recovery from multilayer postconsumer aseptic packaging.
    Cervantes-Reyes A; Núñez-Pineda A; Barrera-Díaz C; Varela-Guerrero V; Martínez-Barrera G; Cuevas-Yañez E
    Waste Manag; 2015 Apr; 38():61-4. PubMed ID: 25681948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separate collection of plastic waste, better than technical sorting from municipal solid waste?
    Feil A; Pretz T; Jansen M; Thoden van Velzen EU
    Waste Manag Res; 2017 Feb; 35(2):172-180. PubMed ID: 27422618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.
    López FA; Román CP; García-Díaz I; Alguacil FJ
    Waste Manag; 2015 Sep; 43():162-7. PubMed ID: 26148645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current status of circularity for aluminum from household waste in Austria.
    Warrings R; Fellner J
    Waste Manag; 2018 Jun; 76():217-224. PubMed ID: 29475615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of material recovery facilities for use in life-cycle assessment.
    Pressley PN; Levis JW; Damgaard A; Barlaz MA; DeCarolis JF
    Waste Manag; 2015 Jan; 35():307-17. PubMed ID: 25301544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does recyclable separation reduce the cost of municipal waste management in Japan?
    Chifari R; Lo Piano S; Matsumoto S; Tasaki T
    Waste Manag; 2017 Feb; 60():32-41. PubMed ID: 28119039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.
    Xevgenos D; Athanasopoulos N; Kostazos PK; Manolakos DE; Moustakas K; Malamis D; Loizidou M
    Waste Manag Res; 2015 May; 33(5):439-52. PubMed ID: 25819929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.
    Wang C; Wang H; Fu J; Zhang L; Luo C; Liu Y
    Waste Manag; 2015 Nov; 45():112-7. PubMed ID: 26253330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impact assessment of solid waste management in Beijing City, China.
    Zhao Y; Christensen TH; Lu W; Wu H; Wang H
    Waste Manag; 2011 Apr; 31(4):793-9. PubMed ID: 21145723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal solid waste processing and separation employing wet torrefaction for alternative fuel production and aluminum reclamation.
    Mu'min GF; Prawisudha P; Zaini IN; Aziz M; Pasek AD
    Waste Manag; 2017 Sep; 67():106-120. PubMed ID: 28529039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An incentive-based source separation model for sustainable municipal solid waste management in China.
    Xu W; Zhou C; Lan Y; Jin J; Cao A
    Waste Manag Res; 2015 May; 33(5):469-76. PubMed ID: 25819930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of residual MSW heating value as a function of waste component recycling.
    Magrinho A; Semiao V
    Waste Manag; 2008 Dec; 28(12):2675-83. PubMed ID: 18313281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compostability of bioplastic packaging materials: an overview.
    Kale G; Kijchavengkul T; Auras R; Rubino M; Selke SE; Singh SP
    Macromol Biosci; 2007 Mar; 7(3):255-77. PubMed ID: 17370278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.
    Bonifazi G; Serranti S; Potenza F; Luciani V; Di Maio F
    Waste Manag; 2017 Feb; 60():50-55. PubMed ID: 27353391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of polypropylene and polyethylene from packaging plastic wastes without contamination of chlorinated plastic films by the combination process of wet gravity separation and ozonation.
    Reddy MS; Okuda T; Nakai S; Nishijima W; Okada M
    Waste Manag; 2011 Aug; 31(8):1848-51. PubMed ID: 21530222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cost evaluation method for transferring municipalities to solid waste source-separated system.
    Lavee D; Nardiya S
    Waste Manag; 2013 May; 33(5):1064-72. PubMed ID: 23465315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.