These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy. Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503 [TBL] [Abstract][Full Text] [Related]
4. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography. Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430 [TBL] [Abstract][Full Text] [Related]
5. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography. Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147 [TBL] [Abstract][Full Text] [Related]
6. Interconversion of gradient and isocratic retention data in reversed-phase liquid chromatography: effect of the uptake of eluent modifier on the retention of analytes. Wang M; Mallette J; Parcher JF J Chromatogr A; 2009 Dec; 1216(49):8630-5. PubMed ID: 19879590 [TBL] [Abstract][Full Text] [Related]
8. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase. Balkatzopoulou P; Fasoula S; Gika H; Nikitas P; Pappa-Louisi A J Chromatogr A; 2015 May; 1396():72-6. PubMed ID: 25900744 [TBL] [Abstract][Full Text] [Related]
9. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships. Li J; Cai B J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of the linear solvation energy relationship, linear solvent strength theory, and typical-conditions model for retention prediction in reversed-phase liquid chromatography. Wang A; Carr PW J Chromatogr A; 2002 Aug; 965(1-2):3-23. PubMed ID: 12236532 [TBL] [Abstract][Full Text] [Related]
12. Optimisation of gradient elution with serially-coupled columns Part II: Multi-linear gradients. Ortiz-Bolsico C; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2014 Dec; 1373():51-60. PubMed ID: 25465000 [TBL] [Abstract][Full Text] [Related]
13. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673 [TBL] [Abstract][Full Text] [Related]
14. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516 [TBL] [Abstract][Full Text] [Related]
15. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
16. Some insights on the description of gradient elution in reversed-phase liquid chromatography. Baeza-Baeza JJ; García-Álvarez-Coque MC J Sep Sci; 2014 Sep; 37(17):2269-77. PubMed ID: 24945785 [TBL] [Abstract][Full Text] [Related]
18. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions. D'Archivio AA; Maggi MA; Ruggieri F J Sep Sci; 2014 Aug; 37(15):1930-6. PubMed ID: 24830601 [TBL] [Abstract][Full Text] [Related]
19. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
20. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]