These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 25459765)
1. Reaction mechanism and free energy profile for acylation of Candida Antarctica lipase B with methylcaprylate and acetylcholine: density functional theory calculations. Googheri MS; Housaindokht MR; Sabzyan H J Mol Graph Model; 2014 Nov; 54():131-40. PubMed ID: 25459765 [TBL] [Abstract][Full Text] [Related]
2. Theoretical studies on the deacylation step of acylated Candida Antarctica lipase B: structural and reaction pathway analysis. Sadeghi Googheri MS; Housaindokht MR; Sabzyan H J Mol Graph Model; 2015 Apr; 57():9-19. PubMed ID: 25622130 [TBL] [Abstract][Full Text] [Related]
3. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine. Chen X; Fang L; Liu J; Zhan CG J Phys Chem B; 2011 Feb; 115(5):1315-22. PubMed ID: 21175195 [TBL] [Abstract][Full Text] [Related]
4. Direct epoxidation in Candida antarctica lipase B studied by experiment and theory. Svedendahl M; Carlqvist P; Branneby C; Allnér O; Frise A; Hult K; Berglund P; Brinck T Chembiochem; 2008 Oct; 9(15):2443-51. PubMed ID: 18837059 [TBL] [Abstract][Full Text] [Related]
5. Chemoselective acylation of (hydroxyalkyl)phenols catalyzed by Candida antarctica lipase B. Miyazawa T; Yamamoto M; Danjo H Biotechnol Lett; 2013 Apr; 35(4):625-30. PubMed ID: 23250446 [TBL] [Abstract][Full Text] [Related]
6. On quantum mechanical--molecular mechanical (QM/MM) approaches to model hydrolysis of acetylcholine by acetylcholinesterase. Nemukhin AV; Grigorenko BL; Morozov DI; Kochetov MS; Lushchekina SV; Varfolomeev SD Chem Biol Interact; 2013 Mar; 203(1):51-6. PubMed ID: 22982775 [TBL] [Abstract][Full Text] [Related]
7. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
8. A semiempirical study of acetylcholine hydrolysis catalyzed by Drosophila melanogaster acetylcholinesterase. Sant'Anna CM; Viana Ados S; do Nascimento Junior NM Bioorg Chem; 2006 Apr; 34(2):77-89. PubMed ID: 16540146 [TBL] [Abstract][Full Text] [Related]
9. Substrate conformations set the rate of enzymatic acrylation by lipases. Syrén PO; Hult K Chembiochem; 2010 Apr; 11(6):802-10. PubMed ID: 20301160 [TBL] [Abstract][Full Text] [Related]
10. Modeling effects of oxyanion hole on the ester hydrolysis catalyzed by human cholinesterases. Gao D; Zhan CG J Phys Chem B; 2005 Dec; 109(48):23070-6. PubMed ID: 16854005 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of hydrophobic esters in a bicontinuous microemulsion catalysed by lipase B from Candida antarctica. Steudle AK; Subinya M; Nestl BM; Stubenrauch C Chemistry; 2015 Feb; 21(6):2691-700. PubMed ID: 25512180 [TBL] [Abstract][Full Text] [Related]
12. Ab initio model study on acetylcholinesterase catalysis: potential energy surfaces of the proton transfer reactions. Tachikawa H; Igarashi M; Nishihira J; Ishibashi T J Photochem Photobiol B; 2005 Apr; 79(1):11-23. PubMed ID: 15792875 [TBL] [Abstract][Full Text] [Related]
13. Finite-temperature effect in the O-acylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B. Valderrama DIB; Daza MC; Doerr M J Mol Graph Model; 2021 Sep; 107():107951. PubMed ID: 34111759 [TBL] [Abstract][Full Text] [Related]
14. A novel self-activation mechanism of Candida antarctica lipase B. Luan B; Zhou R Phys Chem Chem Phys; 2017 Jun; 19(24):15709-15714. PubMed ID: 28589990 [TBL] [Abstract][Full Text] [Related]
16. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis. Fattebert JL; Lau EY; Bennion BJ; Huang P; Lightstone FC J Chem Theory Comput; 2015 Dec; 11(12):5688-95. PubMed ID: 26642985 [TBL] [Abstract][Full Text] [Related]
17. Rational engineering of Candida antarctica lipase B for selective monoacylation of diols. Hamberg A; Maurer S; Hult K Chem Commun (Camb); 2012 Oct; 48(80):10013-5. PubMed ID: 22945018 [TBL] [Abstract][Full Text] [Related]
18. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B. Kwon HC; Shin DY; Lee JH; Kim SW; Kang JW J Microbiol Biotechnol; 2007 Jul; 17(7):1098-105. PubMed ID: 18051319 [TBL] [Abstract][Full Text] [Related]
19. Is Promiscuous CALB a Good Scaffold for Designing New Epoxidases? Bordes I; Recatalá J; Świderek K; Moliner V Molecules; 2015 Sep; 20(10):17789-806. PubMed ID: 26404218 [TBL] [Abstract][Full Text] [Related]
20. Theoretical calculation on degradation mechanism of novel copolyesters under CALB enzyme. Ren Y; Cheng Z; Cheng L; Liu Y; Li M; Yuan T; Shen Z J Environ Sci (China); 2025 Mar; 149():242-253. PubMed ID: 39181639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]