BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25459819)

  • 1. Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Jan; 175():174-81. PubMed ID: 25459819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Apr; 181():62-71. PubMed ID: 25638405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.
    Li H; Xia S; Ma P
    Bioresour Technol; 2016 Oct; 218():615-22. PubMed ID: 27416511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal behaviour of the co-combustion between paper sludge and rice straw.
    Xie Z; Ma X
    Bioresour Technol; 2013 Oct; 146():611-618. PubMed ID: 23973983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO formation during agricultural straw combustion.
    Ren Q; Zhao C; Duan L; Chen X
    Bioresour Technol; 2011 Jul; 102(14):7211-7. PubMed ID: 21592786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.
    Yuan T; Tahmasebi A; Yu J
    Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.
    Ren X; Meng J; Moore AM; Chang J; Gou J; Park S
    Bioresour Technol; 2014; 152():267-74. PubMed ID: 24300845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.
    Sfakiotakis S; Vamvuka D
    Bioresour Technol; 2015 Dec; 197():434-42. PubMed ID: 26356115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
    Gil MV; Casal D; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Jul; 101(14):5601-8. PubMed ID: 20189802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium magnesium acetate on the forming property and fractal dimension of sludge pore structure during combustion.
    Zhang L; Duan F; Huang Y; Chyang C
    Bioresour Technol; 2015 Dec; 197():235-43. PubMed ID: 26342334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-combustion behavior of dyeing sludge and rice husk by using TG-MS: Thermal conversion, gas evolution, and kinetic analyses.
    Wang T; Fu T; Chen K; Cheng R; Chen S; Liu J; Mei M; Li J; Xue Y
    Bioresour Technol; 2020 Sep; 311():123527. PubMed ID: 32422554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-hydrothermal carbonization of oil shale and rice husk: Combustion, pyrolysis characteristics, and synergistic effect.
    Liu Y; Wang E; Kan Z; Liu B; Bai L; Wang Q; Zhang X
    Waste Manag Res; 2023 Feb; 41(2):442-456. PubMed ID: 36127886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response surface optimization, combustion characteristics and kinetic analysis of mixed fuels of Fenton/CaO conditioned municipal sewage sludge and rice husk.
    Xu G; Hu T; Wei H; Cheng L; Wang H; Fang B
    J Environ Manage; 2021 Oct; 296():113181. PubMed ID: 34243090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.