These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25459819)

  • 1. Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Jan; 175():174-81. PubMed ID: 25459819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Apr; 181():62-71. PubMed ID: 25638405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.
    Li H; Xia S; Ma P
    Bioresour Technol; 2016 Oct; 218():615-22. PubMed ID: 27416511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal behaviour of the co-combustion between paper sludge and rice straw.
    Xie Z; Ma X
    Bioresour Technol; 2013 Oct; 146():611-618. PubMed ID: 23973983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO formation during agricultural straw combustion.
    Ren Q; Zhao C; Duan L; Chen X
    Bioresour Technol; 2011 Jul; 102(14):7211-7. PubMed ID: 21592786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.
    Yuan T; Tahmasebi A; Yu J
    Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.
    Ren X; Meng J; Moore AM; Chang J; Gou J; Park S
    Bioresour Technol; 2014; 152():267-74. PubMed ID: 24300845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.
    Sfakiotakis S; Vamvuka D
    Bioresour Technol; 2015 Dec; 197():434-42. PubMed ID: 26356115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
    Gil MV; Casal D; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Jul; 101(14):5601-8. PubMed ID: 20189802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium magnesium acetate on the forming property and fractal dimension of sludge pore structure during combustion.
    Zhang L; Duan F; Huang Y; Chyang C
    Bioresour Technol; 2015 Dec; 197():235-43. PubMed ID: 26342334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-combustion behavior of dyeing sludge and rice husk by using TG-MS: Thermal conversion, gas evolution, and kinetic analyses.
    Wang T; Fu T; Chen K; Cheng R; Chen S; Liu J; Mei M; Li J; Xue Y
    Bioresour Technol; 2020 Sep; 311():123527. PubMed ID: 32422554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-hydrothermal carbonization of oil shale and rice husk: Combustion, pyrolysis characteristics, and synergistic effect.
    Liu Y; Wang E; Kan Z; Liu B; Bai L; Wang Q; Zhang X
    Waste Manag Res; 2023 Feb; 41(2):442-456. PubMed ID: 36127886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response surface optimization, combustion characteristics and kinetic analysis of mixed fuels of Fenton/CaO conditioned municipal sewage sludge and rice husk.
    Xu G; Hu T; Wei H; Cheng L; Wang H; Fang B
    J Environ Manage; 2021 Oct; 296():113181. PubMed ID: 34243090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.