These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25459819)

  • 41. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends.
    Mi B; Liu Z; Hu W; Wei P; Jiang Z; Fei B
    Bioresour Technol; 2016 Jun; 209():50-5. PubMed ID: 26950755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.
    Satyam Naidu V; Aghalayam P; Jayanti S
    Bioresour Technol; 2016 Jun; 209():157-65. PubMed ID: 26967339
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physico-chemical characterization of pine cone shell and its use as biosorbent and fuel.
    Almendros AI; Martín-Lara MA; Ronda A; Pérez A; Blázquez G; Calero M
    Bioresour Technol; 2015 Nov; 196():406-12. PubMed ID: 26263003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.
    Huang X; Rein G
    Bioresour Technol; 2016 May; 207():409-21. PubMed ID: 26901090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative study on combined co-pyrolysis/gasification of walnut shell and bituminous coal by conventional and congruent-mass thermogravimetric analysis (TGA) methods.
    Zhang Y; Fan D; Zheng Y
    Bioresour Technol; 2016 Jan; 199():382-385. PubMed ID: 26306847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes.
    Fernandez-Lopez M; Puig-Gamero M; Lopez-Gonzalez D; Avalos-Ramirez A; Valverde J; Sanchez-Silva L
    Bioresour Technol; 2015 Apr; 182():184-192. PubMed ID: 25698410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An investigation of co-combustion municipal sewage sludge with biomass in a 20kW BFB combustor under air-fired and oxygen-enriched condition.
    Kumar R; Singh RI
    Waste Manag; 2017 Dec; 70():114-126. PubMed ID: 28899590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.
    Virmond E; De Sena RF; Albrecht W; Althoff CA; Moreira RF; José HJ
    Waste Manag; 2012 Oct; 32(10):1952-61. PubMed ID: 22699005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char.
    Deng S; Tan H; Wang X; Yang F; Cao R; Wang Z; Ruan R
    Bioresour Technol; 2017 Sep; 239():302-310. PubMed ID: 28531855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions.
    Chao CY; Kwong PC; Wang JH; Cheung CW; Kendall G
    Bioresour Technol; 2008 Jan; 99(1):83-93. PubMed ID: 17257831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.
    Beheshti SM; Ghassemi H; Shahsavan-Markadeh R; Fremaux S
    Environ Technol; 2015; 36(9-12):1327-33. PubMed ID: 25403373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.
    Ullah H; Liu G; Yousaf B; Ali MU; Abbas Q; Zhou C
    Bioresour Technol; 2017 Dec; 245(Pt A):73-80. PubMed ID: 28892708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simulation of the thermogravimetry analysis of three non-wood pulps.
    Barneto AG; Carmona JA; Alfonso JE; Serrano RS
    Bioresour Technol; 2010 May; 101(9):3220-9. PubMed ID: 20071163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of lime mud on the reaction kinetics and thermodynamics of biomass pyrolysis.
    Li H; Zhou N; Dai L; Cheng Y; Cobb K; Chen P; Ruan R
    Bioresour Technol; 2020 Aug; 310():123475. PubMed ID: 32402989
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics.
    Goldfarb JL; Liu C
    Bioresour Technol; 2013 Dec; 149():208-15. PubMed ID: 24113546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis.
    Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q
    Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis.
    Mallick D; Poddar MK; Mahanta P; Moholkar VS
    Bioresour Technol; 2018 Aug; 261():294-305. PubMed ID: 29677657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.