These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25459851)

  • 1. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.
    Pang J; Zheng M; Sun R; Song L; Wang A; Wang X; Zhang T
    Bioresour Technol; 2015 Jan; 175():424-9. PubMed ID: 25459851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts.
    Ribeiro LS; Órfão JJM; Pereira MFR
    Bioresour Technol; 2018 Sep; 263():402-409. PubMed ID: 29772501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid.
    Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T
    ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol.
    Zheng MY; Wang AQ; Ji N; Pang JF; Wang XD; Zhang T
    ChemSusChem; 2010; 3(1):63-6. PubMed ID: 19998362
    [No Abstract]   [Full Text] [Related]  

  • 7. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.
    Tai Z; Zhang J; Wang A; Zheng M; Zhang T
    Chem Commun (Camb); 2012 Jul; 48(56):7052-4. PubMed ID: 22678506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol.
    Zhang Y; Wang A; Zhang T
    Chem Commun (Camb); 2010 Feb; 46(6):862-4. PubMed ID: 20107631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.
    Liu W; Mu W; Deng Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13558-62. PubMed ID: 25283435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-promoted tungsten carbide catalysts for cellulose conversion: effect of preparation methods.
    Ji N; Zheng M; Wang A; Zhang T; Chen JG
    ChemSusChem; 2012 May; 5(5):939-44. PubMed ID: 22467346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts.
    Ji N; Zhang T; Zheng M; Wang A; Wang H; Wang X; Chen JG
    Angew Chem Int Ed Engl; 2008; 47(44):8510-3. PubMed ID: 18785670
    [No Abstract]   [Full Text] [Related]  

  • 12. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst.
    Liu Y; Luo C; Liu H
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3249-53. PubMed ID: 22368071
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantitation of fast hydrolysis of cellulose catalyzed by its substituents for potential biomass conversion.
    Mu B; Xu H; Li W; Yang Y
    Bioresour Technol; 2019 Feb; 273():305-312. PubMed ID: 30448682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.
    Obama P; Ricochon G; Muniglia L; Brosse N
    Bioresour Technol; 2012 May; 112():156-63. PubMed ID: 22424922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential Fenton oxidation and hydrothermal treatment to improve the effect of pretreatment and enzymatic hydrolysis on mixed hardwood.
    Jeong SY; Lee JW
    Bioresour Technol; 2016 Jan; 200():121-7. PubMed ID: 26476172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.
    Huang W; Gong F; Fan M; Zhai Q; Hong C; Li Q
    Bioresour Technol; 2012 Oct; 121():248-55. PubMed ID: 22858493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miscanthus as cellulosic biomass for bioethanol production.
    Lee WC; Kuan WC
    Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.
    Daorattanachai P; Viriya-empikul N; Laosiripojana N; Faungnawakij K
    Bioresour Technol; 2013 Sep; 144():504-12. PubMed ID: 23907066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct catalytic production of sorbitol from waste cellulosic materials.
    Ribeiro LS; Órfão JJM; Pereira MFR
    Bioresour Technol; 2017 May; 232():152-158. PubMed ID: 28222384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.