These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 25459878)
1. More division of labor at the eukaryotic replication fork. Plosky BS Mol Cell; 2014 Nov; 56(4):467-8. PubMed ID: 25459878 [TBL] [Abstract][Full Text] [Related]
2. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Yu C; Gan H; Han J; Zhou ZX; Jia S; Chabes A; Farrugia G; Ordog T; Zhang Z Mol Cell; 2014 Nov; 56(4):551-63. PubMed ID: 25449133 [TBL] [Abstract][Full Text] [Related]
3. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress. Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319 [TBL] [Abstract][Full Text] [Related]
4. Chromatin Constrains the Initiation and Elongation of DNA Replication. Devbhandari S; Jiang J; Kumar C; Whitehouse I; Remus D Mol Cell; 2017 Jan; 65(1):131-141. PubMed ID: 27989437 [TBL] [Abstract][Full Text] [Related]
5. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Schauer GD; O'Donnell ME Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Georgescu RE; Schauer GD; Yao NY; Langston LD; Yurieva O; Zhang D; Finkelstein J; O'Donnell ME Elife; 2015 Apr; 4():e04988. PubMed ID: 25871847 [TBL] [Abstract][Full Text] [Related]
7. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Lengronne A; McIntyre J; Katou Y; Kanoh Y; Hopfner KP; Shirahige K; Uhlmann F Mol Cell; 2006 Sep; 23(6):787-99. PubMed ID: 16962805 [TBL] [Abstract][Full Text] [Related]
8. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Xu X; Blackwell S; Lin A; Li F; Qin Z; Xiao W Mutat Res Rev Mutat Res; 2015; 764():43-50. PubMed ID: 26041265 [TBL] [Abstract][Full Text] [Related]
9. Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes. Stillman B Mol Cell; 2015 Jul; 59(2):139-41. PubMed ID: 26186286 [TBL] [Abstract][Full Text] [Related]
10. Making connections at DNA replication forks: Mrc1 takes the lead. Labib K Mol Cell; 2008 Oct; 32(2):166-8. PubMed ID: 18951084 [TBL] [Abstract][Full Text] [Related]
11. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Kubota T; Katou Y; Nakato R; Shirahige K; Donaldson AD Cell Rep; 2015 Aug; 12(5):774-87. PubMed ID: 26212319 [TBL] [Abstract][Full Text] [Related]
13. The roles of PCNA SUMOylation, Mms2-Ubc13 and Rad5 in translesion DNA synthesis in Saccharomyces cerevisiae. Halas A; Podlaska A; Derkacz J; McIntyre J; Skoneczna A; Sledziewska-Gojska E Mol Microbiol; 2011 May; 80(3):786-97. PubMed ID: 21362066 [TBL] [Abstract][Full Text] [Related]
14. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Johnson RE; Klassen R; Prakash L; Prakash S Mol Cell; 2015 Jul; 59(2):163-175. PubMed ID: 26145172 [TBL] [Abstract][Full Text] [Related]
15. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability. Colosio A; Frattini C; Pellicanò G; Villa-Hernández S; Bermejo R Nucleic Acids Res; 2016 Dec; 44(22):10676-10690. PubMed ID: 27672038 [TBL] [Abstract][Full Text] [Related]
16. Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Das-Bradoo S; Ricke RM; Bielinsky AK Mol Cell Biol; 2006 Jul; 26(13):4806-17. PubMed ID: 16782870 [TBL] [Abstract][Full Text] [Related]
17. Checking that replication breakdown is not terminal. Carr AM Science; 2002 Jul; 297(5581):557-8. PubMed ID: 12142525 [TBL] [Abstract][Full Text] [Related]
18. Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Hishida T; Ohya T; Kubota Y; Kamada Y; Shinagawa H Mol Cell Biol; 2006 Jul; 26(14):5509-17. PubMed ID: 16809783 [TBL] [Abstract][Full Text] [Related]
19. Density transfer as a method to analyze the progression of DNA replication forks. Tercero JA Methods Mol Biol; 2009; 521():203-13. PubMed ID: 19563108 [TBL] [Abstract][Full Text] [Related]
20. Priming for tolerance and cohesion at replication forks. Branzei D; Szakal B Nucleus; 2016; 7(1):8-12. PubMed ID: 26889705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]