These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25460278)

  • 61. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?
    Kahn LE; Lum PS; Rymer WZ; Reinkensmeyer DJ
    J Rehabil Res Dev; 2006; 43(5):619-30. PubMed ID: 17123203
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Estimating the patient's contribution during robot-assisted therapy.
    Guidali M; Keller U; Klamroth-Marganska V; Nef T; Riener R
    J Rehabil Res Dev; 2013; 50(3):379-94. PubMed ID: 23881764
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation.
    Lledó LD; Badesa FJ; Almonacid M; Cano-Izquierdo JM; Sabater-Navarro JM; Fernández E; Garcia-Aracil N
    PLoS One; 2015; 10(5):e0127777. PubMed ID: 26001214
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Robotics in neuro-rehabilitation.
    Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):955-60. PubMed ID: 19841823
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery.
    Mazzoleni S; Sale P; Franceschini M; Bigazzi S; Carrozza MC; Dario P; Posteraro F
    NeuroRehabilitation; 2013; 33(1):33-9. PubMed ID: 23949024
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy.
    Casadio M; Sanguineti V
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):286-96. PubMed ID: 22531822
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Feedforward model based arm weight compensation with the rehabilitation robot ARMin.
    Just F; Ozen O; Tortora S; Riener R; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The ARAMIS project: a concept robot and technical design.
    Colizzi L; Lidonnici A; Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):1011-101. PubMed ID: 19841834
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Online learning and adaptation of patient support during ADL training.
    Guidali M; Schlink P; Duschau-Wicke A; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975434. PubMed ID: 22275635
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks.
    Bertomeu-Motos A; Lledó LD; Díez JA; Catalan JM; Ezquerro S; Badesa FJ; Garcia-Aracil N
    Sensors (Basel); 2015 Dec; 15(12):30571-83. PubMed ID: 26690160
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Capture, learning, and classification of upper extremity movement primitives in healthy controls and stroke patients.
    Guerra J; Uddin J; Nilsen D; Mclnerney J; Fadoo A; Omofuma IB; Hughes S; Agrawal S; Allen P; Schambra HM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():547-554. PubMed ID: 28813877
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Movement strategy and EMG activities of the upper extremity at assisted reaching exercise with a 7 DOF collaborative robot.
    Kato Y; Olensek A; Zadravec M; Matjacic Z; Tsuji T; Cikajlo I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4886-4889. PubMed ID: 33019084
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Using Inertial Measurement Units and Electromyography to Quantify Movement during Action Research Arm Test Execution.
    Repnik E; Puh U; Goljar N; Munih M; Mihelj M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135413
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Patient-Specific Exercises with the Development of an End-Effector Type Upper Limb Rehabilitation Robot.
    Dong M; Fan W; Li J; Zhang P
    J Healthc Eng; 2022; 2022():4125606. PubMed ID: 36337379
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Robot-aided rehabilitation of neural function in the upper extremities.
    Riener R
    Acta Neurochir Suppl; 2007; 97(Pt 1):465-71. PubMed ID: 17691411
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb.
    Antelis JM; Montesano L; Giralt X; Casals A; Minguez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6410-3. PubMed ID: 23367396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.