BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 25460404)

  • 1. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniaxial and biaxial tensile stress-stretch response of human linea alba.
    Cooney GM; Lake SP; Thompson DM; Castile RM; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2016 Oct; 63():134-140. PubMed ID: 27367944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.
    Lyons M; Winter DC; Simms CK
    J Biomech; 2014 Jun; 47(8):1876-84. PubMed ID: 24725440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material model calibration from planar tension tests on porcine linea alba.
    Acosta Santamaría V; Siret O; Badel P; Guerin G; Novacek V; Turquier F; Avril S
    J Mech Behav Biomed Mater; 2015 Mar; 43():26-34. PubMed ID: 25553553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The suture pullout characteristics of human and porcine linea alba.
    Cooney GM; Lake SP; Thompson DM; Castile RM; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2017 Apr; 68():103-114. PubMed ID: 28157595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forces and deformations of the abdominal wall--a mechanical and geometrical approach to the linea alba.
    Förstemann T; Trzewik J; Holste J; Batke B; Konerding MA; Wolloscheck T; Hartung C
    J Biomech; 2011 Feb; 44(4):600-6. PubMed ID: 21130459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model.
    Gregory DE; Callaghan JP
    J Biomech Eng; 2011 Feb; 133(2):024503. PubMed ID: 21280886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of collagen and elastin fibers to the mechanical behavior of an abdominal connective tissue.
    Levillain A; Orhant M; Turquier F; Hoc T
    J Mech Behav Biomed Mater; 2016 Aug; 61():308-317. PubMed ID: 27100469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis.
    Deeken CR; Thompson DM; Castile RM; Lake SP
    J Mech Behav Biomed Mater; 2014 Oct; 38():6-16. PubMed ID: 24997427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.
    Astruc L; De Meulaere M; Witz JF; Nováček V; Turquier F; Hoc T; Brieu M
    J Mech Behav Biomed Mater; 2018 Jun; 82():45-50. PubMed ID: 29567529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair.
    Deeken CR; Lake SP
    J Mech Behav Biomed Mater; 2017 Oct; 74():411-427. PubMed ID: 28692907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy of human linea alba: a biomechanical study.
    Grässel D; Prescher A; Fitzek S; Keyserlingk DG; Axer H
    J Surg Res; 2005 Mar; 124(1):118-25. PubMed ID: 15734489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure.
    Simón-Allué R; Pérez-López P; Sotomayor S; Peña E; Pascual G; Bellón JM; Calvo B
    J Mech Behav Biomed Mater; 2014 Sep; 37():1-11. PubMed ID: 24859461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of porcine corneas.
    Boschetti F; Triacca V; Spinelli L; Pandolfi A
    J Biomech Eng; 2012 Mar; 134(3):031003. PubMed ID: 22482683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinically relevant mechanical testing of hernia graft constructs.
    Sahoo S; DeLozier KR; Erdemir A; Derwin KA
    J Mech Behav Biomed Mater; 2015 Jan; 41():177-88. PubMed ID: 25460414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of passive viscoelastic response of the abdominal muscle and related constitutive modeling: stress-relaxation behavior.
    Calvo B; Sierra M; Grasa J; Muñoz MJ; Peña E
    J Mech Behav Biomed Mater; 2014 Aug; 36():47-58. PubMed ID: 24793173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive capabilities of various constitutive models for arterial tissue.
    Schroeder F; Polzer S; Slažanský M; Man V; Skácel P
    J Mech Behav Biomed Mater; 2018 Feb; 78():369-380. PubMed ID: 29220821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy.
    Jacobs NT; Cortes DH; Vresilovic EJ; Elliott DM
    J Biomech Eng; 2013 Feb; 135(2):021004. PubMed ID: 23445049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.
    Baah-Dwomoh A; De Vita R
    J Mech Behav Biomed Mater; 2017 Oct; 74():128-141. PubMed ID: 28599153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.