These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25460410)

  • 21. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications.
    Li F; Li J; Huang T; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2017 Jan; 65():814-823. PubMed ID: 27788474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional and highly porous scaffolds for biomedical applications.
    Tyson T; Målberg S; Wåtz V; Finne-Wistrand A; Albertsson AC
    Macromol Biosci; 2011 Oct; 11(10):1432-42. PubMed ID: 21842506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration.
    Martínez-Vázquez FJ; Perera FH; Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2010 Nov; 6(11):4361-8. PubMed ID: 20566307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding compressive deformation behavior of porous Ti using finite element analysis.
    Roy S; Khutia N; Das D; Das M; Balla VK; Bandyopadhyay A; Chowdhury AR
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():436-443. PubMed ID: 27127074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting.
    Zhao D; Huang Y; Ao Y; Han C; Wang Q; Li Y; Liu J; Wei Q; Zhang Z
    J Mech Behav Biomed Mater; 2018 Dec; 88():478-487. PubMed ID: 30223211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering.
    Shi X; Sitharaman B; Pham QP; Liang F; Wu K; Edward Billups W; Wilson LJ; Mikos AG
    Biomaterials; 2007 Oct; 28(28):4078-90. PubMed ID: 17576009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.
    Lietaert K; Cutolo A; Boey D; Van Hooreweder B
    Sci Rep; 2018 Mar; 8(1):4957. PubMed ID: 29563593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compression fatigue behavior of laser processed porous NiTi alloy.
    Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metallic open-cell foams--a promising approach to fabricating good medical implants.
    Ohrndorf A; Krupp U; Christ HJ
    Technol Health Care; 2006; 14(4-5):201-8. PubMed ID: 17065742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
    Arora A; Kothari A; Katti DS
    J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds.
    Charles-Harris M; del Valle S; Hentges E; Bleuet P; Lacroix D; Planell JA
    Biomaterials; 2007 Oct; 28(30):4429-38. PubMed ID: 17644172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the mechanical behavior of a titanium scaffold with a repeating unit-cell substructure.
    Ryan G; McGarry P; Pandit A; Apatsidis D
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):894-906. PubMed ID: 19360888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?
    Tayton E; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Shakesheff K; Howdle SM; Dunlop DG; Oreffo RO
    Acta Biomater; 2012 May; 8(5):1918-27. PubMed ID: 22307029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification.
    Wu C; Ramaswamy Y; Boughton P; Zreiqat H
    Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution.
    Miller AT; Safranski DL; Smith KE; Guldberg RE; Gall K
    J Mech Behav Biomed Mater; 2016 Feb; 54():268-82. PubMed ID: 26479427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.