BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25460411)

  • 1. Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation.
    Palacio-Torralba J; Hammer S; Good DW; Alan McNeill S; Stewart GD; Reuben RL; Chen Y
    J Mech Behav Biomed Mater; 2015 Jan; 41():149-60. PubMed ID: 25460411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-linear viscoelastic properties of fibrotic neck tissues obtained from ultrasound indentation tests in vivo.
    Huang YP; Zheng YP; Leung SF
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):145-54. PubMed ID: 15621318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of tumor nodule in soft tissue: An inverse finite-element framework based on mechanical characterization.
    Candito A; Palacio-Torralba J; Jiménez-Aguilar E; Good DW; McNeill A; Reuben RL; Chen Y
    Int J Numer Method Biomed Eng; 2020 Aug; 36(8):e3369. PubMed ID: 32452138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age.
    Isaksson H; Malkiewicz M; Nowak R; Helminen HJ; Jurvelin JS
    Bone; 2010 Dec; 47(6):1030-8. PubMed ID: 20813215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests.
    Wu JZ; Cutlip RG; Welcome D; Dong RG
    Biomed Mater Eng; 2006; 16(1):53-66. PubMed ID: 16410644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material property determination of sub-surface objects in a viscoelastic environment.
    Mayrose J; Chugh K; Kesavadas T
    Biomed Sci Instrum; 2000; 36():313-7. PubMed ID: 10834251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.
    Zhao X; Pelegri AA
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02741. PubMed ID: 26255624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel palpation-based method for tumor nodule quantification in soft tissue-computational framework and experimental validation.
    Palacio-Torralba J; Reuben RL; Chen Y
    Med Biol Eng Comput; 2020 Jun; 58(6):1369-1381. PubMed ID: 32279204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity.
    Troyer KL; Shetye SS; Puttlitz CM
    J Biomech Eng; 2012 Nov; 134(11):114501. PubMed ID: 23387789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manual discrimination capability when only viscosity is varied in viscoelastic stiffness stimuli.
    Nicholson LL; Adams RD; Maher CG
    J Manipulative Physiol Ther; 2003; 26(6):365-73. PubMed ID: 12902965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.
    Maccabi A; Shin A; Namiri NK; Bajwa N; St John M; Taylor ZD; Grundfest W; Saddik GN
    PLoS One; 2018; 13(1):e0191919. PubMed ID: 29373598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for rapid and quantitative mechanical assessment of soft tissue for diagnostic purposes: A computational study.
    Palacio-Torralba J; Good DW; Stewart GD; McNeill SA; Reuben RL; Chen Y
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28753220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the Impact of Cancer on the Viscoelastic Properties of the Prostate Gland using a Quasi-Linear Viscoelastic Model.
    Helisaz H; Belanger E; Black P; Bacca M; Chiao M
    Acta Biomater; 2024 Jan; 173():184-198. PubMed ID: 37939817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.
    Zhao X; Pelegri AA
    J Biomech Eng; 2014 Sep; 136(9):094502. PubMed ID: 24975997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative mechanical assessment of the whole prostate gland ex vivo using dynamic instrumented palpation.
    Hammer SJ; Good DW; Scanlan P; Palacio-Torralba J; Phipps S; Stewart GD; Shu W; Chen Y; McNeill SA; Reuben RL
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1081-1100. PubMed ID: 28965486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.