BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25460414)

  • 1. Clinically relevant mechanical testing of hernia graft constructs.
    Sahoo S; DeLozier KR; Erdemir A; Derwin KA
    J Mech Behav Biomed Mater; 2015 Jan; 41():177-88. PubMed ID: 25460414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis.
    Deeken CR; Thompson DM; Castile RM; Lake SP
    J Mech Behav Biomed Mater; 2014 Oct; 38():6-16. PubMed ID: 24997427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-reinforced dermis graft for ventral hernia repair.
    Sahoo S; DeLozier KR; Dumm RA; Rosen MJ; Derwin KA
    J Mech Behav Biomed Mater; 2014 Jun; 34():320-9. PubMed ID: 24704969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.
    Cordero A; Hernández-Gascón B; Pascual G; Bellón JM; Calvo B; Peña E
    Ann Biomed Eng; 2016 Jul; 44(7):2181-8. PubMed ID: 26620778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Human Acellular Dermis Graft in Porcine Models for Ventral Hernia Repair.
    Sahoo S; Baker AR; Haskins IN; Krpata DM; Rosen MJ; Derwin KA
    Tissue Eng Part C Methods; 2017 Nov; 23(11):718-727. PubMed ID: 28602151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilaminate resorbable biomedical device under biaxial loading.
    Whitson BA; Cheng BC; Kokini K; Badylak SF; Patel U; Morff R; O'Keefe CR
    J Biomed Mater Res; 1998; 43(3):277-81. PubMed ID: 9730065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of tendon suturing on the interference fixation strength of quadrupled hamstring tendon grafts.
    Höher J; Offerhaus C; Steenlage E; Weiler A; Scheffler S
    Arch Orthop Trauma Surg; 2013 Sep; 133(9):1309-14. PubMed ID: 23836318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical behaviour of knit synthetic mesh used in hernia surgery.
    Tomaszewska A
    Acta Bioeng Biomech; 2016; 18(1):77-86. PubMed ID: 27149956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-directional mechanical analysis of synthetic scaffolds for hernia repair.
    Est S; Roen M; Chi T; Simien A; Castile RM; Thompson DM; Blatnik JA; Deeken CR; Lake SP
    J Mech Behav Biomed Mater; 2017 Jul; 71():43-53. PubMed ID: 28259784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore size and pore shape--but not mesh density--alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair.
    Lake SP; Ray S; Zihni AM; Thompson DM; Gluckstein J; Deeken CR
    J Mech Behav Biomed Mater; 2015 Feb; 42():186-97. PubMed ID: 25486631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical biocompatibility of prosthetic meshes: a comprehensive protocol for mechanical characterization.
    Maurer MM; Röhrnbauer B; Feola A; Deprest J; Mazza E
    J Mech Behav Biomed Mater; 2014 Dec; 40():42-58. PubMed ID: 25194524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central-third bone-patellar tendon-bone allografts demonstrate superior biomechanical failure characteristics compared with hemi-patellar tendon grafts.
    Yanke AB; Bell R; Lee AS; Shewman E; Wang VM; Bach BR
    Am J Sports Med; 2013 Nov; 41(11):2521-6. PubMed ID: 24007760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of mesh materials used for hernia repair and soft tissue augmentation.
    Pott PP; Schwarz ML; Gundling R; Nowak K; Hohenberger P; Roessner ED
    PLoS One; 2012; 7(10):e46978. PubMed ID: 23071685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh.
    Li X; Kruger JA; Jor JW; Wong V; Dietz HP; Nash MP; Nielsen PM
    J Mech Behav Biomed Mater; 2014 Sep; 37():48-55. PubMed ID: 24942626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes.
    Laterreur V; Ruel J; Auger FA; Vallières K; Tremblay C; Lacroix D; Tondreau M; Bourget JM; Germain L
    J Mech Behav Biomed Mater; 2014 Jun; 34():253-63. PubMed ID: 24631624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.
    Zhang W; Feng Y; Lee CH; Billiar KL; Sacks MS
    J Biomech Eng; 2015 Jun; 137(6):064501. PubMed ID: 25429606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of two alternative tibial plateau leveling osteotomy plates with the original standard in an axially loaded gap model: an in vitro study.
    Kloc PA; Kowaleski MP; Litsky AS; Brown NO; Johnson KA
    Vet Surg; 2009 Jan; 38(1):40-8. PubMed ID: 19152616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts--a preliminary report.
    Roeder RA; Lantz GC; Geddes LA
    Biomed Instrum Technol; 2001; 35(2):110-20. PubMed ID: 11383308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.