These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25460417)

  • 41. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.
    Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F
    J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.
    Hu X; Wei Q; Li CY; Deng JY; Liu S; Zhang LY
    Biomed Mater; 2010 Oct; 5(5):054107. PubMed ID: 20876964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel Ti-Nb alloys with improved wear resistance for biomedical implant application.
    Chapala P; Acharyya SG; Shariff SM; Naik G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4208-4211. PubMed ID: 28269211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface topography, corrosion and microhardness of nitrogen-diffusion-hardened titanium alloy.
    Venugopalan R; George MA; Weimer JJ; Lucas LC
    Biomaterials; 1999 Sep; 20(18):1709-16. PubMed ID: 10503972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wear induced by motion between bone and titanium or cobalt-chrome alloys.
    Bischoff UW; Freeman MA; Smith D; Tuke MA; Gregson PJ
    J Bone Joint Surg Br; 1994 Sep; 76(5):713-6. PubMed ID: 8083256
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.
    Marin E; Offoiach R; Lanzutti A; Regis M; Fusi S; Fedrizzi L
    Biomed Mater Eng; 2014; 24(1):581-92. PubMed ID: 24211942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants.
    Wang C; Zhang G; Li Z; Zeng X; Xu Y; Zhao S; Hu H; Zhang Y; Ren T
    J Mech Behav Biomed Mater; 2019 Feb; 90():460-471. PubMed ID: 30448560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O.
    Stráský J; Harcuba P; Václavová K; Horváth K; Landa M; Srba O; Janeček M
    J Mech Behav Biomed Mater; 2017 Jul; 71():329-336. PubMed ID: 28399493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.
    Wang Z; Huang W; Ma Y
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():211-8. PubMed ID: 25063112
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of β-Titanium microstructures for implant materials.
    Çallıoğlu Ş; Acar P
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110715. PubMed ID: 32204027
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wear resistance of experimental titanium alloys for dental applications.
    Faria AC; Rodrigues RC; Claro AP; da Gloria Chiarello de Mattos M; Ribeiro RF
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1873-9. PubMed ID: 22098886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanomechanical properties, wear resistance and in-vitro characterization of Ta
    Sarraf M; Razak BA; Nasiri-Tabrizi B; Dabbagh A; Kasim NHA; Basirun WJ; Bin Sulaiman E
    J Mech Behav Biomed Mater; 2017 Feb; 66():159-171. PubMed ID: 27886563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture.
    Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A
    Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The influence of heat treatment and role of boron on sliding wear behaviour of β-type Ti-35Nb-7.2Zr-5.7Ta alloy in dry condition and in simulated body fluids.
    Majumdar P; Singh SB; Chakraborty M
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):284-97. PubMed ID: 21316616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface.
    Feng XJ; Macak JM; Albu SP; Schmuki P
    Acta Biomater; 2008 Mar; 4(2):318-23. PubMed ID: 17923448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.
    Kesteven J; Kannan MB; Walter R; Khakbaz H; Choe HC
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():226-31. PubMed ID: 25491981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements.
    Takematsu E; Noguchi K; Kuroda K; Ikoma T; Niinomi M; Matsushita N
    PLoS One; 2018; 13(1):e0189967. PubMed ID: 29342150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation and growth of calcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy.
    Li SJ; Yang R; Niinomi M; Hao YL; Cui YY
    Biomaterials; 2004 Jun; 25(13):2525-32. PubMed ID: 14751737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.