These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25460696)

  • 1. Explaining the growth behavior of surfactant micelles.
    Bergström LM
    J Colloid Interface Sci; 2015 Feb; 440():109-18. PubMed ID: 25460696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the geometrical shape and growth behaviour of surfactant micelles investigated with small-angle neutron scattering.
    Bergström LM; Grillo I
    Soft Matter; 2014 Dec; 10(46):9362-72. PubMed ID: 25342439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth Behavior, Geometrical Shape, and Second CMC of Micelles Formed by Cationic Gemini Esterquat Surfactants.
    Bergström LM; Tehrani-Bagha A; Nagy G
    Langmuir; 2015 Apr; 31(16):4644-53. PubMed ID: 25835031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and bending energetics of toruslike micelles.
    Bergström LM
    J Colloid Interface Sci; 2008 Nov; 327(1):191-7. PubMed ID: 18771780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending energetics of tablet-shaped micelles: a novel approach to rationalize micellar systems.
    Bergström LM
    Chemphyschem; 2007 Feb; 8(3):462-72. PubMed ID: 17542003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural behaviour of mixed cationic surfactant micelles: a small-angle neutron scattering study.
    Bergström LM; Garamus VM
    J Colloid Interface Sci; 2012 Sep; 381(1):89-99. PubMed ID: 22683217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: a generalized phase separation model.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP
    Adv Colloid Interface Sci; 2014 Apr; 206():17-45. PubMed ID: 23558017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bending elasticity of charged surfactant layers: the effect of mixing.
    Bergström LM
    Langmuir; 2006 Aug; 22(16):6796-813. PubMed ID: 16863224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical modeling of micelle growth. 5. Molecular thermodynamics of micelles from zwitterionic surfactants.
    Danov KD; Marinova KG; Radulova GM; Georgiev MT
    J Colloid Interface Sci; 2022 Dec; 627():469-482. PubMed ID: 35870400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degree of micelle ionization and micellar growth for gemini surfactants detected by 6-methoxy-N-(3-sulfopropyl)quinolinium fluorescence quenching.
    Kuwamoto K; Asakawa T; Ohta A; Miyagishi S
    Langmuir; 2005 Aug; 21(17):7691-5. PubMed ID: 16089370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical approach to the sodium decanoate-dodecanoate mixed surfactant system in aqueous solution.
    Rodríguez-Pulido A; Casado A; Muñoz-Ubeda M; Junquera E; Aicart E
    Langmuir; 2010 Jun; 26(12):9378-85. PubMed ID: 20462279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation behavior of fluorocarbon and hydrocarbon cationic surfactant mixtures: a study of 1H NMR and 19F NMR.
    Dong S; Xu G; Hoffmann H
    J Phys Chem B; 2008 Aug; 112(31):9371-8. PubMed ID: 18613719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-Insensitive) surfactants: a regular solution theory modeling approach.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Nov; 22(24):9894-904. PubMed ID: 17106978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-Angle Neutron Scattering and Fluorescence Studies of Mixed Surfactants with Dodecyl Tails.
    Griffiths PC; Whatton ML; Abbott RJ; Kwan W; Pitt AR; Howe AM; King SM; Heenan RK
    J Colloid Interface Sci; 1999 Jul; 215(1):114-123. PubMed ID: 10362480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.