These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25460700)

  • 41. Inhibited nanobubble transport in a saturated porous medium: Effects of deposited colloidal particles.
    Sugimoto T; Hamamoto S; Nishimura T
    J Contam Hydrol; 2021 Oct; 242():103854. PubMed ID: 34293646
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of graphene oxide nanoparticles on the transport and cotransport of biocolloids in saturated porous media.
    Georgopoulou MP; Syngouna VI; Chrysikopoulos CV
    Colloids Surf B Biointerfaces; 2020 May; 189():110841. PubMed ID: 32059139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2017 Feb; 150():41-49. PubMed ID: 27870993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.
    Klitzke S; Schroeder J; Selinka HC; Szewzyk R; Chorus I
    Sci Total Environ; 2015 Jun; 518-519():130-8. PubMed ID: 25747372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colloid transport with wetting fronts: interactive effects of solution surface tension and ionic strength.
    Zhuang J; Goeppert N; Tu C; McCarthy J; Perfect E; McKay L
    Water Res; 2010 Feb; 44(4):1270-8. PubMed ID: 20056511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media: Influences of electrolyte, clay and humic acid.
    Han B; Liu W; Zhao X; Cai Z; Zhao D
    Sci Total Environ; 2017 Dec; 599-600():188-197. PubMed ID: 28475912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Virus retention and transport through Al-oxide coated sand columns: effects of ionic strength and composition.
    Zhuang J; Jin Y
    J Contam Hydrol; 2003 Feb; 60(3-4):193-209. PubMed ID: 12504359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.
    Park JA; Kim SB
    J Contam Hydrol; 2015 Oct; 181():131-40. PubMed ID: 25704059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coupled effect of flow velocity and structural heterogeneity on transport and release of kaolinite colloids in saturated porous media.
    Mao M; Zheng X; Chen C; Zhao K; Yan C; Sharma P; Shang J
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35065-35077. PubMed ID: 32583117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing surface charge potentials of clay basal planes and edges by direct force measurements.
    Zhao H; Bhattacharjee S; Chow R; Wallace D; Masliyah JH; Xu Z
    Langmuir; 2008 Nov; 24(22):12899-910. PubMed ID: 18925764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter.
    Li M; Zhang X; Yi K; He L; Han P; Tong M
    Environ Pollut; 2021 Oct; 287():117585. PubMed ID: 34147776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures.
    Chrysikopoulos CV; Aravantinou AF
    J Hazard Mater; 2012 Sep; 233-234():148-57. PubMed ID: 22819478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. E. coli interactions, adhesion and transport in alumino-silica clays.
    Wei H; Yang G; Wang B; Li R; Chen G; Li Z
    Colloids Surf B Biointerfaces; 2017 Jun; 154():82-88. PubMed ID: 28324690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Colloid-mediated transport of tetracycline in saturated porous media: Comparison between ferrihydrite and montmorillonite.
    Wang M; Zhang Q; Lu T; Chen J; Wei Q; Chen W; Zhou Y; Qi Z
    J Environ Manage; 2021 Dec; 299():113638. PubMed ID: 34488115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relative transport of human adenovirus and MS2 in porous media.
    Wong K; Bouchard D; Molina M
    Colloids Surf B Biointerfaces; 2014 Oct; 122():778-784. PubMed ID: 25194593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of aggregation on nanoscale titanium dioxide (nTiO
    Tang Z; Cheng T; Fisher-Power LM
    Chemosphere; 2018 Oct; 209():517-524. PubMed ID: 29945044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial and copper adsorption by smectitic clay--an experimental study.
    Hassen A; Jamoussi F; Saidi N; Mabrouki Z; Fakhfakh E
    Environ Technol; 2003 Sep; 24(9):1117-27. PubMed ID: 14599145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.