These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 25460872)
1. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana. Zhang Y; Jin X; Ouyang Z; Li X; Liu B; Huang L; Hong Y; Zhang H; Song F; Li D J Plant Physiol; 2015 Mar; 175():21-5. PubMed ID: 25460872 [TBL] [Abstract][Full Text] [Related]
2. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
4. The de novo biosynthesis of vitamin B6 is required for disease resistance against Botrytis cinerea in tomato. Zhang Y; Liu B; Li X; Ouyang Z; Huang L; Hong Y; Zhang H; Li D; Song F Mol Plant Microbe Interact; 2014 Jul; 27(7):688-99. PubMed ID: 24678833 [TBL] [Abstract][Full Text] [Related]
5. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D; Zhang H; Song Q; Wang L; Liu S; Hong Y; Huang L; Song F BMC Plant Biol; 2015 Jun; 15():143. PubMed ID: 26070456 [TBL] [Abstract][Full Text] [Related]
6. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Wang M; Zhu Y; Han R; Yin W; Guo C; Li Z; Wang X Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494485 [TBL] [Abstract][Full Text] [Related]
7. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984 [TBL] [Abstract][Full Text] [Related]
8. Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Tang D; Simonich MT; Innes RW Plant Physiol; 2007 Jun; 144(2):1093-103. PubMed ID: 17434992 [TBL] [Abstract][Full Text] [Related]
10. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. Zhao J; Devaiah SP; Wang C; Li M; Welti R; Wang X New Phytol; 2013 Jul; 199(1):228-240. PubMed ID: 23577648 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA400-guided cleavage of Pentatricopeptide repeat protein mRNAs Renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi. Park YJ; Lee HJ; Kwak KJ; Lee K; Hong SW; Kang H Plant Cell Physiol; 2014 Sep; 55(9):1660-8. PubMed ID: 25008976 [TBL] [Abstract][Full Text] [Related]
13. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Zhang H; Hong Y; Huang L; Li D; Song F Sci Rep; 2016 Jul; 6():30251. PubMed ID: 27445230 [TBL] [Abstract][Full Text] [Related]
15. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. Choi du S; Lim CW; Hwang BK Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107 [TBL] [Abstract][Full Text] [Related]
16. Chitosan Oligosaccharide Induces Resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by Activating Both Salicylic Acid- and Jasmonic Acid-Mediated Pathways. Jia X; Zeng H; Wang W; Zhang F; Yin H Mol Plant Microbe Interact; 2018 Dec; 31(12):1271-1279. PubMed ID: 29869942 [TBL] [Abstract][Full Text] [Related]
17. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Resistance of Nabi RBS; Rolly NK; Tayade R; Khan M; Shahid M; Yun BW Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768971 [TBL] [Abstract][Full Text] [Related]
19. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. Desclos-Theveniau M; Arnaud D; Huang TY; Lin GJ; Chen WY; Lin YC; Zimmerli L PLoS Pathog; 2012 Feb; 8(2):e1002513. PubMed ID: 22346749 [TBL] [Abstract][Full Text] [Related]
20. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H; Yan M; Deng R; Song F; Jiang M Gene; 2020 Feb; 727():144245. PubMed ID: 31715302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]