These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25460900)

  • 1. Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces.
    Huang X; Xu Z; Mao Y; Ji Y; Xu H; Xiong Y; Li Y
    Biosens Bioelectron; 2015 Apr; 66():184-90. PubMed ID: 25460900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multicolorimetric assay for rapid detection of Listeria monocytogenes based on the etching of gold nanorods.
    Liu Y; Wang J; Zhao C; Guo X; Song X; Zhao W; Liu S; Xu K; Li J
    Anal Chim Acta; 2019 Feb; 1048():154-160. PubMed ID: 30598145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naked-Eye Enumeration of Single
    Chen F; Di T; Yang CT; Zhang T; Thierry B; Zhou X
    ACS Sens; 2020 Apr; 5(4):1140-1148. PubMed ID: 32207302
    [No Abstract]   [Full Text] [Related]  

  • 4. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles.
    Liu Y; Wang J; Song X; Xu K; Chen H; Zhao C; Li J
    Mikrochim Acta; 2018 Jul; 185(8):360. PubMed ID: 29978265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Enzyme-Linked Immunosorbent Assay Using Nanospherical Brushes as a Catalase Container for Colorimetric Detection of Ultralow Concentrations of Listeria monocytogenes.
    Chen R; Huang X; Xu H; Xiong Y; Li Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28632-9. PubMed ID: 26646325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles.
    Fu Z; Zhou X; Xing D
    Methods; 2013 Dec; 64(3):260-6. PubMed ID: 23948710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cefepime-modified magnetic nanoparticles and enzymatic colorimetry for the detection of Listeria monocytogenes in lettuces.
    Xiao F; Wang Z; Li W; Qi W; Bai X; Xu H
    Food Chem; 2023 May; 409():135296. PubMed ID: 36586253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotin-exposure-based immunomagnetic separation coupled with nucleic acid lateral flow biosensor for visibly detecting viable Listeria monocytogenes.
    Li F; Li F; Luo D; Lai W; Xiong Y; Xu H
    Anal Chim Acta; 2018 Aug; 1017():48-56. PubMed ID: 29534795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode.
    Chen Q; Lin J; Gan C; Wang Y; Wang D; Xiong Y; Lai W; Li Y; Wang M
    Biosens Bioelectron; 2015 Dec; 74():504-11. PubMed ID: 26176211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunomagnetic separation and Listeriamonocytogenes detection with surface-enhanced Raman scattering.
    Yeğenoğlu Akçinar H; Aslim B; Torul H; Güven B; Zengin A; Suludere Z; Boyaci IH; Tamer U
    Turk J Med Sci; 2020 Jun; 50(4):1157-1167. PubMed ID: 32283902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence immunoassay for the targeted determination of trace
    Liang S; Ji L; Zhong Y; Wang T; Yang H; Li QL; Li X; Zhao S
    Anal Methods; 2022 Mar; 14(11):1124-1133. PubMed ID: 35212322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation.
    Levin AD; Ringaci A; Alenichev MK; Drozhzhennikova EB; Shevchenko KG; Cherkasov VR; Nikitin MP; Nikitin PI
    Anal Bioanal Chem; 2020 May; 412(14):3423-3431. PubMed ID: 32279165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoflower-Enhanced Dynamic Light Scattering Immunosensor for the Ultrasensitive No-Wash Detection of
    Zhan S; Fang H; Fu J; Lai W; Leng Y; Huang X; Xiong Y
    J Agric Food Chem; 2019 Aug; 67(32):9104-9111. PubMed ID: 31334655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1D ZnO-Au nanocomposites as label-free photoluminescence immunosensors for rapid detection of Listeria monocytogenes.
    Myndrul V; Yanovska A; Babayevska N; Korniienko V; Diedkova K; Jancelewicz M; Pogorielov M; Iatsunskyi I
    Talanta; 2024 May; 271():125641. PubMed ID: 38218055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-step large-volume magnetic separation combined with PCR assay for sensitive detection of Listeria monocytogenes in pasteurized milk.
    Luo D; Huang X; Mao Y; Chen C; Li F; Xu H; Xiong Y
    J Dairy Sci; 2017 Oct; 100(10):7883-7890. PubMed ID: 28803008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles.
    Wang X; Niessner R; Knopp D
    Sensors (Basel); 2014 Nov; 14(11):21535-48. PubMed ID: 25405511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering.
    Liu X; Dai Q; Austin L; Coutts J; Knowles G; Zou J; Chen H; Huo Q
    J Am Chem Soc; 2008 Mar; 130(9):2780-2. PubMed ID: 18257576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment.
    Day JB; Basavanna U
    J Appl Microbiol; 2015 Jan; 118(1):233-44. PubMed ID: 25346434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor.
    Geng T; Morgan MT; Bhunia AK
    Appl Environ Microbiol; 2004 Oct; 70(10):6138-46. PubMed ID: 15466560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.