These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25460920)

  • 1. Damage mechanisms in uniaxial compression of single enamel rods.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2015 Feb; 42():1-9. PubMed ID: 25460920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of crystal arrangement on the mechanical performance of enamel.
    An B; Wang R; Zhang D
    Acta Biomater; 2012 Oct; 8(10):3784-93. PubMed ID: 22743111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniaxial compressive behavior of micro-pillars of dental enamel characterized in multiple directions.
    Yilmaz ED; Jelitto H; Schneider GA
    Acta Biomater; 2015 Apr; 16():187-95. PubMed ID: 25620794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical behavior of enamel rods under micro-compression.
    Yilmaz ED; Schneider GA
    J Mech Behav Biomed Mater; 2016 Oct; 63():183-194. PubMed ID: 27415405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective property of tooth enamel: monoclinic behavior.
    Lu C; Nakamura T; Korach CS
    J Biomech; 2012 May; 45(8):1437-43. PubMed ID: 22405497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of human enamel under compression: On the feature of calculations.
    Zaytsev D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():518-23. PubMed ID: 26952454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains.
    Sui T; Lunt AJ; Baimpas N; Sandholzer MA; Hu J; Dolbnya IP; Landini G; Korsunsky AM
    Acta Biomater; 2014 Jan; 10(1):343-54. PubMed ID: 24121194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.
    Ma S; Scheider I; Bargmann S
    J Mech Behav Biomed Mater; 2016 Sep; 62():515-533. PubMed ID: 27294283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation behavior of human enamel and dentin-enamel junction under compression.
    Zaytsev D; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():15-21. PubMed ID: 24268228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the elastic/plastic transition of human enamel by nanoindentation.
    Ang SF; Scholz T; Klocke A; Schneider GA
    Dent Mater; 2009 Nov; 25(11):1403-10. PubMed ID: 19647864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisation.
    Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Landini G; Korsunsky AM
    J Struct Biol; 2013 Nov; 184(2):136-46. PubMed ID: 24113527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics.
    He LH; Swain MV
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):18-29. PubMed ID: 19627768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of strain rate on the hardness and elastic modulus of human tooth enamel.
    Zhang YF; Zheng J; Yu JX; He HT
    J Mech Behav Biomed Mater; 2018 Feb; 78():491-495. PubMed ID: 29248846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical microcrack model for materials exemplified at enamel.
    Özcoban H; Yilmaz ED; Schneider GA
    Dent Mater; 2018 Jan; 34(1):69-77. PubMed ID: 29175159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical anisotropy on a longitudinal section of human enamel studied by nanoindentation.
    Cheng ZJ; Wang XM; Ge J; Yan JX; Ji N; Tian LL; Cui FZ
    J Mater Sci Mater Med; 2010 Jun; 21(6):1811-6. PubMed ID: 20229184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.
    Scheider I; Xiao T; Yilmaz E; Schneider GA; Huber N; Bargmann S
    Acta Biomater; 2015 Mar; 15():244-53. PubMed ID: 25484332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild boar's tusk enamel: Structure and mechanical behavior.
    Wang X; Zhang N; Zhong Y; Yan F; Jiang B
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():354-362. PubMed ID: 30948071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of human dental enamel on the nanometre scale.
    Habelitz S; Marshall SJ; Marshall GW; Balooch M
    Arch Oral Biol; 2001 Feb; 46(2):173-83. PubMed ID: 11163325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microstructure upon elastic behaviour of human tooth enamel.
    Xie ZH; Swain MV; Swadener G; Munroe P; Hoffman M
    J Biomech; 2009 May; 42(8):1075-80. PubMed ID: 19345363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.