These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 25460920)
21. Mechanical properties of dental tissues in dolphins (Cetacea: Delphinoidea and Inioidea). Loch C; Swain MV; van Vuuren LJ; Kieser JA; Fordyce RE Arch Oral Biol; 2013 Jul; 58(7):773-9. PubMed ID: 23290354 [TBL] [Abstract][Full Text] [Related]
22. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
23. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions. Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375 [TBL] [Abstract][Full Text] [Related]
24. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques. Manickam K; Machireddy RR; Seshadri S J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915 [TBL] [Abstract][Full Text] [Related]
25. Experimental study of cancellous bone under large strains and a constitutive probabilistic model. Kefalas V; Eftaxiopoulos DA J Mech Behav Biomed Mater; 2012 Feb; 6():41-52. PubMed ID: 22301172 [TBL] [Abstract][Full Text] [Related]
26. Micromechanical characterization of prismless enamel in the tuatara, Sphenodon punctatus. Yilmaz ED; Bechtle S; Özcoban H; Kieser JA; Swain MV; Schneider GA J Mech Behav Biomed Mater; 2014 Nov; 39():210-7. PubMed ID: 25146675 [TBL] [Abstract][Full Text] [Related]
27. Nanotribological characterization of tooth enamel rod affected by surface treatment. Jeng YR; Lin TT; Shieh DB J Biomech; 2009 Oct; 42(14):2249-54. PubMed ID: 19748627 [TBL] [Abstract][Full Text] [Related]
28. Depth-dependent mechanical properties of enamel by nanoindentation. Zhou J; Hsiung LL J Biomed Mater Res A; 2007 Apr; 81(1):66-74. PubMed ID: 17109413 [TBL] [Abstract][Full Text] [Related]
29. Human enamel rod presents anisotropic nanotribological properties. Jeng YR; Lin TT; Hsu HM; Chang HJ; Shieh DB J Mech Behav Biomed Mater; 2011 May; 4(4):515-22. PubMed ID: 21396600 [TBL] [Abstract][Full Text] [Related]
30. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. Habibi MK; Samaei AT; Gheshlaghi B; Lu J; Lu Y Acta Biomater; 2015 Apr; 16():178-86. PubMed ID: 25662164 [TBL] [Abstract][Full Text] [Related]
31. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine. Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Walmsley A; Lumley PJ; Landini G; Korsunsky AM Acta Biomater; 2013 Aug; 9(8):7937-47. PubMed ID: 23602879 [TBL] [Abstract][Full Text] [Related]
33. Rate dependent biomechanical properties of corneal stroma in unconfined compression. Hatami-Marbini H; Etebu E Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279 [TBL] [Abstract][Full Text] [Related]
34. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material. Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638 [TBL] [Abstract][Full Text] [Related]
35. Elastic modulus and stress-strain response of human enamel by nano-indentation. He LH; Fujisawa N; Swain MV Biomaterials; 2006 Aug; 27(24):4388-98. PubMed ID: 16644007 [TBL] [Abstract][Full Text] [Related]
36. Finite element analysis of depth effect on measuring elastic modulus of a core-shell structure for application of instrumented indentation in tooth enamel. Jia Y; Xuan FZ; Yang F Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():84-9. PubMed ID: 24582226 [TBL] [Abstract][Full Text] [Related]
37. Stress-strain analysis for evaluating the effect of the orientation of dentin tubules on their mechanical properties and deformation behavior. Han CF; Wu BH; Chung CJ; Chuang SF; Li WL; Lin JF J Mech Behav Biomed Mater; 2012 Aug; 12():1-8. PubMed ID: 22659363 [TBL] [Abstract][Full Text] [Related]
38. Surface Hardening Behavior of Enamel by Masticatory Loading: Occurrence Mechanism and Antiwear Effect. Peng J; Xiao H; Yang D; Lei L; Zheng J; Zhou Z ACS Biomater Sci Eng; 2020 Aug; 6(8):4454-4461. PubMed ID: 33455168 [TBL] [Abstract][Full Text] [Related]
39. The role of property gradients on the mechanical behavior of human enamel. An B; Wang R; Arola D; Zhang D J Mech Behav Biomed Mater; 2012 May; 9():63-72. PubMed ID: 22498284 [TBL] [Abstract][Full Text] [Related]
40. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales. Ang SF; Bortel EL; Swain MV; Klocke A; Schneider GA Biomaterials; 2010 Mar; 31(7):1955-63. PubMed ID: 19969342 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]