These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 25460928)
1. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density. Whitford C; Studer H; Boote C; Meek KM; Elsheikh A J Mech Behav Biomed Mater; 2015 Feb; 42():76-87. PubMed ID: 25460928 [TBL] [Abstract][Full Text] [Related]
2. A viscoelastic anisotropic hyperelastic constitutive model of the human cornea. Whitford C; Movchan NV; Studer H; Elsheikh A Biomech Model Mechanobiol; 2018 Feb; 17(1):19-29. PubMed ID: 28780705 [TBL] [Abstract][Full Text] [Related]
3. Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue. Zhou D; Abass A; Eliasy A; Studer HP; Movchan A; Movchan N; Elsheikh A J R Soc Interface; 2019 May; 16(154):20180685. PubMed ID: 31039694 [TBL] [Abstract][Full Text] [Related]
4. Numerical Simulation of Corneal Fibril Reorientation in Response to External Loading. Zhou D; Abass A; Eliasy A; Movchan A; Movchan N; Elsheikh A Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31500114 [TBL] [Abstract][Full Text] [Related]
5. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models. Huang L; Shen M; Liu T; Zhang Y; Wang Y J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the optimal cutting depth in small incision lenticule extraction based on a collagen fibril crimping constitutive model of the cornea. Li Y; Yang Y; Shen M; Wang C; Chang L; Liu T; Wang Y J Biomech; 2024 May; 169():112145. PubMed ID: 38761745 [TBL] [Abstract][Full Text] [Related]
7. An inverse finite element method for determining the anisotropic properties of the cornea. Nguyen TD; Boyce BL Biomech Model Mechanobiol; 2011 Jun; 10(3):323-37. PubMed ID: 20602142 [TBL] [Abstract][Full Text] [Related]
8. A microstructurally-based finite element model of the incised human cornea. Pinsky PM; Datye DV J Biomech; 1991; 24(10):907-22. PubMed ID: 1744149 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method. Xu M; Lerner AL; Funkenbusch PD; Richhariya A; Yoon G Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):287-296. PubMed ID: 29602301 [TBL] [Abstract][Full Text] [Related]
10. Individualized Characterization of the Distribution of Collagen Fibril Dispersion Using Optical Aberrations of the Cornea for Biomechanical Models. Xu M; Ramirez-Garcia MA; Narang H; Buckley MR; Lerner AL; Yoon G Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):54. PubMed ID: 32866268 [TBL] [Abstract][Full Text] [Related]
11. Characterization of hyperelastic mechanical properties for youth corneal anterior central stroma based on collagen fibril crimping constitutive model. Liu T; Shen M; Huang L; Xiang Y; Li H; Zhang Y; Wang Y J Mech Behav Biomed Mater; 2020 Mar; 103():103575. PubMed ID: 32090903 [TBL] [Abstract][Full Text] [Related]
12. Microstructurally-based constitutive modelling of the skin - Linking intrinsic ageing to microstructural parameters. Pond D; McBride AT; Davids LM; Reddy BD; Limbert G J Theor Biol; 2018 May; 444():108-123. PubMed ID: 29407269 [TBL] [Abstract][Full Text] [Related]
13. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Meek KM; Boote C Prog Retin Eye Res; 2009 Sep; 28(5):369-92. PubMed ID: 19577657 [TBL] [Abstract][Full Text] [Related]
14. Biaxial hyperelastic and anisotropic behaviors of the corneal anterior central stroma along the preferential fibril orientations. Part II: Quantitative computational analysis of mechanical response of stromal components. Wang C; Shen M; Song Y; Chang L; Yang Y; Li Y; Liu T; Wang Y J Mech Behav Biomed Mater; 2023 Jun; 142():105802. PubMed ID: 37043981 [TBL] [Abstract][Full Text] [Related]
15. A microstructural model of cross-link interaction between collagen fibrils in the human cornea. Pandolfi A; Gizzi A; Vasta M Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180079. PubMed ID: 30879417 [TBL] [Abstract][Full Text] [Related]
16. Biaxial hyperelastic and anisotropic behaviors of the corneal anterior central stroma along the preferential fibril orientations. Part I: Measurement and calibration of personalized stress-strain curves. Wang C; Shen M; Song Y; Chang L; Yang Y; Li Y; Liu T; Wang Y Exp Eye Res; 2023 Nov; 236():109677. PubMed ID: 37827443 [TBL] [Abstract][Full Text] [Related]
17. The inclusion of the epithelium in numerical models of the human cornea. Montanino A; Pandolfi A Biomech Model Mechanobiol; 2024 Jun; 23(3):709-720. PubMed ID: 38129672 [TBL] [Abstract][Full Text] [Related]
18. Constitutive Modeling of Corneal Tissue: Influence of Three-Dimensional Collagen Fiber Microstructure. Wang S; Hatami-Marbini H J Biomech Eng; 2021 Mar; 143(3):. PubMed ID: 32909596 [TBL] [Abstract][Full Text] [Related]
19. Ex vivo, in vivo and in silico studies of corneal biomechanics: a systematic review. Mascolini MV; Toniolo I; Carniel EL; Fontanella CG Phys Eng Sci Med; 2024 Jun; 47(2):403-441. PubMed ID: 38598066 [TBL] [Abstract][Full Text] [Related]
20. A mechanical model of the cornea considering the crimping morphology of collagen fibrils. Liu X; Wang L; Ji J; Yao W; Wei W; Fan J; Joshi S; Li D; Fan Y Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2739-46. PubMed ID: 24692124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]