BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25460966)

  • 1. Modeling aggregation and sedimentation of nanoparticles in the aquatic environment.
    Markus AA; Parsons JR; Roex EW; de Voogt P; Laane RW
    Sci Total Environ; 2015 Feb; 506-507():323-9. PubMed ID: 25460966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems: a theoretical analysis.
    Quik JT; van De Meent D; Koelmans AA
    Water Res; 2014 Oct; 62():193-201. PubMed ID: 24956601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to assess exposure of aquatic organisms to manufactured nanoparticles?
    Quik JT; Vonk JA; Hansen SF; Baun A; Van De Meent D
    Environ Int; 2011 Aug; 37(6):1068-77. PubMed ID: 21411153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
    Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW
    Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the transport of engineered metallic nanoparticles in the river Rhine.
    Markus AA; Parsons JR; Roex EW; de Voogt P; Laane RW
    Water Res; 2016 Mar; 91():214-24. PubMed ID: 26799711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior.
    Ottofuelling S; Von der Kammer F; Hofmann T
    Environ Sci Technol; 2011 Dec; 45(23):10045-52. PubMed ID: 22013881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural colloids are the dominant factor in the sedimentation of nanoparticles.
    Quik JT; Stuart MC; Wouterse M; Peijnenburg W; Hendriks AJ; van de Meent D
    Environ Toxicol Chem; 2012 May; 31(5):1019-22. PubMed ID: 22447393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury transport and fate models in aquatic systems: A review and synthesis.
    Zhu S; Zhang Z; Žagar D
    Sci Total Environ; 2018 Oct; 639():538-549. PubMed ID: 29800847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange of TiO2 nanoparticles between streams and streambeds.
    Boncagni NT; Otaegui JM; Warner E; Curran T; Ren J; de Cortalezzi MM
    Environ Sci Technol; 2009 Oct; 43(20):7699-705. PubMed ID: 19921881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples.
    Zhang L; Li J; Yang K; Liu J; Lin D
    Environ Pollut; 2016 Apr; 211():132-40. PubMed ID: 26745398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments.
    Koelmans AA; Nowack B; Wiesner MR
    Environ Pollut; 2009 Apr; 157(4):1110-6. PubMed ID: 18954924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquatic environmental nanoparticles.
    Wigginton NS; Haus KL; Hochella MF
    J Environ Monit; 2007 Dec; 9(12):1306-16. PubMed ID: 18049768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteroaggregation of nanoparticles with biocolloids and geocolloids.
    Wang H; Adeleye AS; Huang Y; Li F; Keller AA
    Adv Colloid Interface Sci; 2015 Dec; 226(Pt A):24-36. PubMed ID: 26233495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of heterogeneous aggregation for NP fate in natural and engineered systems.
    Therezien M; Thill A; Wiesner MR
    Sci Total Environ; 2014 Jul; 485-486():309-318. PubMed ID: 24727597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the Release, Transport and Fate of Engineered Nanoparticles in the Aquatic Environment - A Review.
    Markus AA; Parsons JR; Roex EWM; de Voogt P; Laane RWPM
    Rev Environ Contam Toxicol; 2017; 243():53-87. PubMed ID: 28028609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a comprehensive understanding of aggregation-settling movement of CeO
    Lv B; Wang C; Hou J; Wang P; Miao L; Xing B
    Environ Pollut; 2020 Feb; 257():113584. PubMed ID: 31733953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport.
    Hammes J; Gallego-Urrea JA; Hassellöv M
    Water Res; 2013 Sep; 47(14):5350-61. PubMed ID: 23863373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.