These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25461002)

  • 1. Biological reformation of ethanol to hydrogen by Rhodopseudomonas palustris CGA009.
    Liu Y; Ghosh D; Hallenbeck PC
    Bioresour Technol; 2015 Jan; 176():189-95. PubMed ID: 25461002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: Response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration.
    Ghosh D; Sobro IF; Hallenbeck PC
    Bioresour Technol; 2012 Feb; 106():154-60. PubMed ID: 22206915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009.
    Gosse JL; Engel BJ; Rey FE; Harwood CS; Scriven LE; Flickinger MC
    Biotechnol Prog; 2007; 23(1):124-30. PubMed ID: 17269679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture.
    Zhu X; Xie X; Liao Q; Wang Y; Lee D
    Bioresour Technol; 2011 Sep; 102(18):8696-9. PubMed ID: 21411314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen.
    Pott RW; Howe CJ; Dennis JS
    Bioresour Technol; 2014; 152():464-70. PubMed ID: 24326037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the yield of dark microaerobic production of hydrogen from lactate by Rhodopseudomonas palustris.
    Lazaro CZ; Hitit ZY; Hallenbeck PC
    Bioresour Technol; 2017 Dec; 245(Pt A):123-131. PubMed ID: 28892681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of bio-fuels (hydrogen and lipids) through a photofermentation process.
    Carlozzi P; Buccioni A; Minieri S; Pushparaj B; Piccardi R; Ena A; Pintucci C
    Bioresour Technol; 2010 May; 101(9):3115-20. PubMed ID: 20060291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds.
    Pott RW; Howe CJ; Dennis JS
    Bioresour Technol; 2013 Feb; 130():725-30. PubMed ID: 23334033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.
    Adessi A; Concato M; Sanchini A; Rossi F; De Philippis R
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2917-26. PubMed ID: 26762392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hydrogen photoproduction from acetate by Rhodopseudomonas palustris].
    Yang SP; Zhao CG; Liu RT; Qu YB; Qian XM
    Sheng Wu Gong Cheng Xue Bao; 2002 Jul; 18(4):486-91. PubMed ID: 12385249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris.
    Gosse JL; Engel BJ; Hui JC; Harwood CS; Flickinger MC
    Biotechnol Prog; 2010; 26(4):907-18. PubMed ID: 20730752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates.
    Chen CY; Lu WB; Liu CH; Chang JS
    Bioresour Technol; 2008 Jun; 99(9):3609-16. PubMed ID: 17826982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT.
    Pakpour F; Najafpour G; Tabatabaei M; Tohidfar M; Younesi H
    Bioprocess Biosyst Eng; 2014 May; 37(5):923-30. PubMed ID: 24078148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetate as a carbon source for hydrogen production by photosynthetic bacteria.
    Barbosa MJ; Rocha JM; Tramper J; Wijffels RH
    J Biotechnol; 2001 Jan; 85(1):25-33. PubMed ID: 11164959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.
    Singh V; Mani I; Chaudhary DK; Dhar PK
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1158-71. PubMed ID: 24197521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on improvement of continuous hydrogen production by photosynthetic biofilm in interior illuminant reactor.
    Liu W; Yuan L; Wei B
    J Environ Biol; 2016 Sep; 37(5):999-1006. PubMed ID: 29251900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentative Escherichia coli makes a substantial contribution to H2 production in coculture with phototrophic Rhodopseudomonas palustris.
    Sangani AA; McCully AL; LaSarre B; McKinlay JB
    FEMS Microbiol Lett; 2019 Jul; 366(14):. PubMed ID: 31329226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities.
    Muzziotti D; Adessi A; Faraloni C; Torzillo G; De Philippis R
    Res Microbiol; 2016 Jun; 167(5):350-6. PubMed ID: 26916624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.