These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25461017)

  • 1. Cost of areal reduction of gulf hypoxia through agricultural practice.
    Whittaker G; Barnhart BL; Srinivasan R; Arnold JG
    Sci Total Environ; 2015 Feb; 505():149-53. PubMed ID: 25461017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone.
    Rabotyagov S; Campbell T; Jha M; Gassman PW; Arnold J; Kurkalova L; Secchi S; Feng H; Kling CL
    Ecol Appl; 2010 Sep; 20(6):1542-55. PubMed ID: 20945758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potential integrated water quality strategy for the Mississippi River Basin and the Gulf of Mexico.
    Greenhalgh S; Faeth P
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():976-83. PubMed ID: 12805841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.
    Panagopoulos Y; Makropoulos C; Mimikou M
    J Environ Manage; 2011 Oct; 92(10):2823-35. PubMed ID: 21742430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.
    Lancelot C; Thieu V; Polard A; Garnier J; Billen G; Hecq W; Gypens N
    Sci Total Environ; 2011 May; 409(11):2179-91. PubMed ID: 21439607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.
    Ha M; Zhang Z; Wu M
    Sci Total Environ; 2018 Sep; 635():1585-1599. PubMed ID: 29703598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest.
    Christianson R; Christianson L; Wong C; Helmers M; McIsaac G; Mulla D; McDonald M
    J Environ Manage; 2018 Jan; 206():1072-1080. PubMed ID: 30029341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters.
    Lewis WM; Wurtsbaugh WA; Paerl HW
    Environ Sci Technol; 2011 Dec; 45(24):10300-5. PubMed ID: 22070635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management Practices Used in Agricultural Drainage Ditches to Reduce Gulf of Mexico Hypoxia.
    Faust DR; Kröger R; Moore MT; Rush SA
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):32-40. PubMed ID: 29238843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The science of hypoxia in the Northern Gulf of Mexico: a review.
    Bianchi TS; DiMarco SF; Cowan JH; Hetland RD; Chapman P; Day JW; Allison MA
    Sci Total Environ; 2010 Mar; 408(7):1471-84. PubMed ID: 20092873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach.
    Day JW; Yañéz Arancibia A; Mitsch WJ; Lara-Dominguez AL; Day JN; Ko JY; Lane R; Lindsey J; Lomeli DZ
    Biotechnol Adv; 2003 Dec; 22(1-2):135-59. PubMed ID: 14623048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The price of conserving agricultural biodiversity.
    Koo B; Pardey P; Wright B
    Nat Biotechnol; 2003 Feb; 21(2):126-8. PubMed ID: 12560828
    [No Abstract]   [Full Text] [Related]  

  • 14. Economic analysis as a basis for large-scale nitrogen control decisions: reducing nitrogen loads to the Gulf of Mexico.
    Doering OC; Ribaudo M; Diaz-Hermelo F; Heimlich R; Hitzhusen F; Howard C; Kazmierczak R; Lee J; Libby L; Milon W; Peters M; Prato A
    ScientificWorldJournal; 2001 Oct; 1 Suppl 2():968-75. PubMed ID: 12805894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico.
    Greene RM; Lehrter JC; Hagy JD
    Ecol Appl; 2009 Jul; 19(5):1161-75. PubMed ID: 19688924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gulf of Mexico hypoxia: exploring increasing sensitivity to nitrogen loads.
    Liu Y; Evans MA; Scavia D
    Environ Sci Technol; 2010 Aug; 44(15):5836-41. PubMed ID: 20608722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.
    Wu Y; Liu S
    J Environ Monit; 2012 Sep; 14(9):2350-61. PubMed ID: 22790209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iowa stream nitrate and the Gulf of Mexico.
    Jones CS; Nielsen JK; Schilling KE; Weber LJ
    PLoS One; 2018; 13(4):e0195930. PubMed ID: 29649312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting summer hypoxia in the northern Gulf of Mexico: redux.
    Turner RE; Rabalais NN; Justić D
    Mar Pollut Bull; 2012 Feb; 64(2):319-24. PubMed ID: 22153907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agro-hydrologic landscapes in the Upper Mississippi and Ohio River basins.
    Schilling KE; Wolter CF; McLellan E
    Environ Manage; 2015 Mar; 55(3):646-56. PubMed ID: 25479705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.