BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25461041)

  • 1. Modeling water outflow from tile-drained agricultural fields.
    Kuzmanovski V; Trajanov A; Leprince F; Džeroski S; Debeljak M
    Sci Total Environ; 2015 Feb; 505():390-401. PubMed ID: 25461041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview.
    Malone RW; Ahuja LR; Ma L; Wauchope RD; Ma Q; Rojas KW
    Pest Manag Sci; 2004 Mar; 60(3):205-21. PubMed ID: 15025234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots.
    Ma Q; Wauchope RD; Ma L; Rojas KW; Malone RW; Ahuja LR
    Pest Manag Sci; 2004 Mar; 60(3):267-76. PubMed ID: 15025238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing management options to reduce surface runoff and sediment yield with farmers: an experiment in south-western France.
    Furlan A; Poussin JC; Mailhol JC; Le Bissonnais Y; Gumiere SJ
    J Environ Manage; 2012 Apr; 96(1):74-85. PubMed ID: 22208400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.
    Zhang X; Goh KS
    J Environ Qual; 2015 Nov; 44(6):1809-20. PubMed ID: 26641333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling hydrology, metribuzin degradation and metribuzin transport in macroporous tilled and no-till silt loam soil using RZWQM.
    Malone RW; Ma L; Wauchope RD; Ahuja LR; Rojas KW; Ma Q; Warner R; Byers M
    Pest Manag Sci; 2004 Mar; 60(3):253-66. PubMed ID: 15025237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.
    Filipović V; Coquet Y; Pot V; Houot S; Benoit P
    Sci Total Environ; 2014 Nov; 499():546-59. PubMed ID: 24958010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability of models to predict phosphorus losses in drained fields: a review.
    Radcliffe DE; Reid DK; Blombäck K; Bolster CH; Collick AS; Easton ZM; Francesconi W; Fuka DR; Johnsson H; King K; Larsbo M; Youssef MA; Mulkey AS; Nelson NO; Persson K; Ramirez-Avila JJ; Schmieder F; Smith DR
    J Environ Qual; 2015 Mar; 44(2):614-28. PubMed ID: 26023980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the risk of water pollution by pesticides from imbalanced data.
    Trajanov A; Kuzmanovski V; Real B; Perreau JM; Džeroski S; Debeljak M
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18781-18792. PubMed ID: 29713974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pesticide module of the Root Zone Water Quality Model (RZWQM): testing and sensitivity analysis of selected algorithms for pesticide fate and surface runoff.
    Ma Q; Wauchope RD; Rojas KW; Ahuja LR; Ma L; Malone RW
    Pest Manag Sci; 2004 Mar; 60(3):240-52. PubMed ID: 15025236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating transport of nitrogen and phosphorus in a Cambisol after natural and simulated intense rainfall.
    Kaufmann V; Pinheiro A; Castro NM
    J Contam Hydrol; 2014 May; 160():53-64. PubMed ID: 24650647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward quantifying water pollution abatement in response to installing buffers on crop land.
    Dosskey MG
    Environ Manage; 2001 Nov; 28(5):577-98. PubMed ID: 11568840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source-pathway separation of multiple contaminants during a rainfall-runoff event in an artificially drained agricultural watershed.
    Tomer MD; Wilson CG; Moorman TB; Cole KJ; Heer D; Isenhart TM
    J Environ Qual; 2010; 39(3):882-95. PubMed ID: 20400584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative assessment of agricultural runoff and soil erosion using mathematical modeling: applications in the Mediterranean region.
    Arhonditsis G; Giourga C; Loumou A; Koulouri M
    Environ Manage; 2002 Sep; 30(3):434-53. PubMed ID: 12148076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of water flow and nitrogen transport for a Bulgarian experimental plot using SWAP and ANIMO models.
    Marinov D; Querner E; Roelsma J
    J Contam Hydrol; 2005 Apr; 77(3):145-64. PubMed ID: 15763353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models.
    Fox GA; Sabbagh GJ; Chen W; Russell MH
    Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning model to delineate sub-surface agricultural drainage from satellite imagery.
    Redoloza FS; Williamson TN; Headman AO; Allred BJ
    J Environ Qual; 2023; 52(4):907-921. PubMed ID: 37170699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating sulfadimidine transport in surface runoff and soil at the microplot and field scale.
    Larsbo M; Fenner K; Stoob K; Burkhardt M; Abbaspour K; Stamm C
    J Environ Qual; 2008; 37(3):788-97. PubMed ID: 18453399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.