These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25461060)

  • 1. Landscape analysis of nutrient-enriched margins (lagg) in ombrotrophic peatlands.
    Langlois MN; Price JS; Rochefort L
    Sci Total Environ; 2015 Feb; 505():573-86. PubMed ID: 25461060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquifer depressurization and water table lowering induces landscape scale subsidence and hydrophysical change in peatlands of the Hudson Bay Lowlands.
    Balliston NE; Price JS
    Sci Total Environ; 2023 Jan; 855():158837. PubMed ID: 36116649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental factors explaining the vegetation patterns in a temperate peatland.
    Pellerin S; Lagneau LA; Lavoie M; Larocque M
    C R Biol; 2009 Aug; 332(8):720-31. PubMed ID: 19632655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.
    Ulanowski TA; Branfireun BA
    Sci Total Environ; 2013 Jun; 454-455():211-8. PubMed ID: 23542673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota.
    Hill BH; Jicha TM; Lehto LLP; Elonen CM; Sebestyen SD; Kolka RK
    Sci Total Environ; 2016 Apr; 550():880-892. PubMed ID: 26851760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs.
    Gaffney PPJ; Hancock MH; Taggart MA; Andersen R
    J Environ Manage; 2018 Aug; 219():239-251. PubMed ID: 29751255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland.
    Wang M; Talbot J; Moore TR
    Sci Total Environ; 2018 Apr; 621():1255-1263. PubMed ID: 29055599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland.
    Ratcliffe JL; Creevy A; Andersen R; Zarov E; Gaffney PPJ; Taggart MA; Mazei Y; Tsyganov AN; Rowson JG; Lapshina ED; Payne RJ
    Sci Total Environ; 2017 Dec; 607-608():816-828. PubMed ID: 28711843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLANTS AND PEAT CUTTINGS: HISTORICAL ECOLOGY OF A MUCH EXPLOITED PEATLAND - THORNE WASTE, YORKSHIRE, UK.
    Smart PJ; Wheeler BD; Willis AJ
    New Phytol; 1986 Dec; 104(4):731-748. PubMed ID: 33873855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant community dynamics, nutrient cycling, and alternative stable equilibria in peatlands.
    Pastor J; Peckham B; Bridgham S; Weltzin J; Chen J
    Am Nat; 2002 Nov; 160(5):553-68. PubMed ID: 18707507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peatland microbial communities and decomposition processes in the james bay lowlands, Canada.
    Preston MD; Smemo KA; McLaughlin JW; Basiliko N
    Front Microbiol; 2012; 3():70. PubMed ID: 22393328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revegetation of peat excavations in a derelict raised bog.
    Jane Smart P; Wheeler BD; Willis AJ
    New Phytol; 1989 Apr; 111(4):733-748. PubMed ID: 33874073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in peatland porewater chemistry over time and space along a bog to fen gradient.
    Griffiths NA; Sebestyen SD; Oleheiser KC
    Sci Total Environ; 2019 Dec; 697():134152. PubMed ID: 31487589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra.
    Vernimmen R; Hooijer A; Akmalia R; Fitranatanegara N; Mulyadi D; Yuherdha A; Andreas H; Page S
    Carbon Balance Manag; 2020 Mar; 15(1):4. PubMed ID: 32206931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of microcosm experiments for quantifying lateral flow and evapotranspiration on recovering bog ecotypes.
    Swenson MM; Regan S; Gill LW
    Hydrol Process; 2020 Oct; 34(22):4211-4225. PubMed ID: 33132498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.
    Fisher MM; Graham JM; Graham LE
    Microb Ecol; 1998 Nov; 36(3):259-269. PubMed ID: 9852506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic retention and release in ombrotrophic peatlands.
    Rothwell JJ; Taylor KG; Ander EL; Evans MG; Daniels SM; Allott TE
    Sci Total Environ; 2009 Feb; 407(4):1405-17. PubMed ID: 19010516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrological setting of infertile species-rich wetland--a case study in the warm temperate Japan.
    Kikuchi A; Nakagoshi N; Onda Y
    J Environ Sci (China); 2003 Mar; 15(2):279-83. PubMed ID: 12765272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining LiDAR and IKONOS data for eco-hydrological classification of an ombrotrophic peatland.
    Anderson K; Bennie JJ; Milton EJ; Hughes PD; Lindsay R; Meade R
    J Environ Qual; 2010; 39(1):260-73. PubMed ID: 20048314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.
    Heijmans MM; van der Knaap YA; Holmgren M; Limpens J
    Glob Chang Biol; 2013 Jul; 19(7):2240-50. PubMed ID: 23526779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.