These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25461086)

  • 1. Life cycle assessment of gasoline production and use in Chile.
    Morales M; Gonzalez-García S; Aroca G; Moreira MT
    Sci Total Environ; 2015 Feb; 505():833-43. PubMed ID: 25461086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combustion emissions from refining lower quality oil: what is the global warming potential?
    Karras G
    Environ Sci Technol; 2010 Dec; 44(24):9584-9. PubMed ID: 21114339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):125-31. PubMed ID: 21043516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.
    Corbett JJ; Winebrake JJ
    J Air Waste Manag Assoc; 2008 Apr; 58(4):538-42. PubMed ID: 18422040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars.
    Forte A; Zucaro A; Fagnano M; Fierro A
    Sci Total Environ; 2017 Nov; 598():365-376. PubMed ID: 28448928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GHG Emissions Impact of Shifts in the Ratio of Gasoline to Diesel Production at U.S. Refineries: A PADD Level Analysis.
    Motazedi K; Posen ID; Bergerson JA
    Environ Sci Technol; 2018 Nov; 52(22):13609-13618. PubMed ID: 30354083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
    Elgowainy A; Han J; Cai H; Wang M; Forman GS; DiVita VB
    Environ Sci Technol; 2014 Jul; 48(13):7612-24. PubMed ID: 24869918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. U.S. refinery efficiency: impacts analysis and implications for fuel carbon policy implementation.
    Forman GS; Divita VB; Han J; Cai H; Elgowainy A; Wang M
    Environ Sci Technol; 2014 Jul; 48(13):7625-33. PubMed ID: 24870020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends of greenhouse gas emissions from the road transport sector in India.
    Singh A; Gangopadhyay S; Nanda PK; Bhattacharya S; Sharma C; Bhan C
    Sci Total Environ; 2008 Feb; 390(1):124-31. PubMed ID: 17977579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criteria Air Pollutant and Greenhouse Gases Emissions from U.S. Refineries Allocated to Refinery Products.
    Sun P; Young B; Elgowainy A; Lu Z; Wang M; Morelli B; Hawkins T
    Environ Sci Technol; 2019 Jun; 53(11):6556-6569. PubMed ID: 31051076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States.
    Tessum CW; Marshall JD; Hill JD
    Environ Sci Technol; 2012 Oct; 46(20):11408-17. PubMed ID: 22906224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.
    Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H
    Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends.
    Scacchi CC; González-García S; Caserini S; Rigamonti L
    Sci Total Environ; 2010 Oct; 408(21):5010-8. PubMed ID: 20692687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental aspects of eucalyptus based ethanol production and use.
    González-García S; Moreira MT; Feijoo G
    Sci Total Environ; 2012 Nov; 438():1-8. PubMed ID: 22960456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
    Burnham A; Han J; Clark CE; Wang M; Dunn JB; Palou-Rivera I
    Environ Sci Technol; 2012 Jan; 46(2):619-27. PubMed ID: 22107036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Economic and environmental benefits of higher-octane gasoline.
    Speth RL; Chow EW; Malina R; Barrett SR; Heywood JB; Green WH
    Environ Sci Technol; 2014 Jun; 48(12):6561-8. PubMed ID: 24870412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.