These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25461101)

  • 1. A risk-based approach to sanitary sewer pipe asset management.
    Baah K; Dubey B; Harvey R; McBean E
    Sci Total Environ; 2015 Feb; 505():1011-7. PubMed ID: 25461101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of core sampling and visual inspection for assessment of concrete sewer pipe condition.
    Stanić N; de Haan C; Tirion M; Langeveld JG; Clemens FH
    Water Sci Technol; 2013; 67(11):2458-66. PubMed ID: 23752377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks.
    Anbari MJ; Tabesh M; Roozbahani A
    J Environ Manage; 2017 Apr; 190():91-101. PubMed ID: 28040592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of self-cleansing sanitary sewer systems with the use of flushing devices.
    Goormans T; Engelen D; Bouteligier R; Willems P; Berlamont J
    Water Sci Technol; 2009; 60(4):901-8. PubMed ID: 19700828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.
    Sousa V; Matos JP; Almeida N; Saldanha Matos J
    Water Sci Technol; 2014; 69(3):622-7. PubMed ID: 24552736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable management of leakage from wastewater pipelines.
    DeSilva D; Burn S; Tjandraatmadja G; Moglia M; Davis P; Wolf L; Held I; Vollertsen J; Williams W; Hafskjold L
    Water Sci Technol; 2005; 52(12):189-98. PubMed ID: 16477986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmonized assessment of nutrient pollution from urban systems including losses from sewer exfiltration: a case study in Germany.
    Nguyen HH; Venohr M
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63878-63893. PubMed ID: 33495958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced criticality assessment method for sewer pipeline assets.
    Syachrani S; Jeong HD; Chung CS
    Water Sci Technol; 2013; 67(6):1302-9. PubMed ID: 23508155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of sulphide build-up in filled sewer pipes.
    Alani AM; Faramarzi A; Mahmoodian M; Tee KF
    Environ Technol; 2014 Aug; 35(13-16):1721-8. PubMed ID: 24956763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydraulic capacity of deteriorating sewer systems.
    Pollert J; Ugarelli R; Saegrov S; Schilling W; Di Federico V
    Water Sci Technol; 2005; 52(12):207-14. PubMed ID: 16477988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning approach for predicting and localizing the failure and damage point in sewer networks due to pipe properties.
    Goodarzi MR; Vazirian M
    J Water Health; 2024 Mar; 22(3):487-509. PubMed ID: 38557566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method.
    Alani AM; Faramarzi A
    Int J Environ Res Public Health; 2015 Jun; 12(6):6641-56. PubMed ID: 26068092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer aided decision support on choosing the right technology for sewer rehabilitation.
    Plenker T
    Water Sci Technol; 2002; 46(6-7):403-10. PubMed ID: 12381018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simplified Sanitary Sewer System Generator for Exploratory Modelling at City-Scale.
    Duque N; Bach PM; Scholten L; Fappiano F; Maurer M
    Water Res; 2022 Feb; 209():117903. PubMed ID: 34906878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of water source management practices in residential areas on sewer networks - a review.
    Marleni N; Gray S; Sharma A; Burn S; Muttil N
    Water Sci Technol; 2012; 65(4):624-42. PubMed ID: 22277221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.
    Wang R; Eckelman MJ; Zimmerman JB
    Environ Sci Technol; 2013 Oct; 47(19):11189-98. PubMed ID: 23957532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sewer deterioration modeling with condition data lacking historical records.
    Egger C; Scheidegger A; Reichert P; Maurer M
    Water Res; 2013 Nov; 47(17):6762-79. PubMed ID: 24112629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach.
    Karpf C; Krebs P
    Water Res; 2011 May; 45(10):3129-36. PubMed ID: 21497364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial heterogeneity assessment of factors affecting sewer pipe blockages and predictions.
    Okwori E; Viklander M; Hedström A
    Water Res; 2021 Apr; 194():116934. PubMed ID: 33636665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-objective optimisation model for sewer rehabilitation considering critical risk of failure.
    Ward B; Savić DA
    Water Sci Technol; 2012; 66(11):2410-7. PubMed ID: 23032772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.