BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 25461117)

  • 1. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.
    Gabrielle B; Gagnaire N; Massad RS; Dufossé K; Bessou C
    Bioresour Technol; 2014; 152():511-8. PubMed ID: 24280674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodiesel production in a semiarid environment: a life cycle assessment approach.
    Biswas WK; Barton L; Carter D
    Environ Sci Technol; 2011 Apr; 45(7):3069-74. PubMed ID: 21381655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of management strategies on the global warming potential at the cropping system level.
    Goglio P; Grant BB; Smith WN; Desjardins RL; Worth DE; Zentner R; Malhi SS
    Sci Total Environ; 2014 Aug; 490():921-33. PubMed ID: 24911772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attributional life cycle assessment of biofuels for shipping: Addressing alternative geographical locations and cultivation systems.
    Kesieme U; Pazouki K; Murphy A; Chrysanthou A
    J Environ Manage; 2019 Apr; 235():96-104. PubMed ID: 30677660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.
    Li X; Mupondwa E
    Sci Total Environ; 2014 May; 481():17-26. PubMed ID: 24572928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment.
    Styles D; Börjesson P; D'Hertefeldt T; Birkhofer K; Dauber J; Adams P; Patil S; Pagella T; Pettersson LB; Peck P; Vaneeckhaute C; Rosenqvist H
    Ambio; 2016 Dec; 45(8):872-884. PubMed ID: 27240661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?
    Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M
    J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical production of bioenergy from agricultural crops and residue in Iran.
    Karimi Alavijeh M; Yaghmaei S
    Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.
    Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H
    Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide.
    Bauer SK; Grotz LS; Connelly EB; Colosi LM
    Bioresour Technol; 2016 Oct; 218():196-201. PubMed ID: 27367816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algae biodiesel life cycle assessment using current commercial data.
    Passell H; Dhaliwal H; Reno M; Wu B; Ben Amotz A; Ivry E; Gay M; Czartoski T; Laurin L; Ayer N
    J Environ Manage; 2013 Nov; 129():103-11. PubMed ID: 23900083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.
    Tonini D; Hamelin L; Wenzel H; Astrup T
    Environ Sci Technol; 2012 Dec; 46(24):13521-30. PubMed ID: 23126612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.
    Laratte B; Guillaume B; Kim J; Birregah B
    Sci Total Environ; 2014 May; 481():588-95. PubMed ID: 24631622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coastal eutrophication in Europe caused by production of energy crops.
    van Wijnen J; Ivens WP; Kroeze C; Löhr AJ
    Sci Total Environ; 2015 Apr; 511():101-11. PubMed ID: 25536176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends.
    Chilkoor G; Upadhyayula VK; Gadhamshetty V; Koratkar N; Tysklind M
    Environ Sci Process Impacts; 2017 Feb; 19(2):141-153. PubMed ID: 28091679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing rice yields while minimizing yield-scaled global warming potential.
    Pittelkow CM; Adviento-Borbe MA; van Kessel C; Hill JE; Linquist BA
    Glob Chang Biol; 2014 May; 20(5):1382-93. PubMed ID: 24115565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty propagation in life cycle assessment of biodiesel versus diesel: global warming and non-renewable energy.
    Hong J
    Bioresour Technol; 2012 Jun; 113():3-7. PubMed ID: 22178489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.
    Tsao CC; Campbell JE; Mena-Carrasco M; Spak SN; Carmichael GR; Chen Y
    Environ Sci Technol; 2012 Oct; 46(19):10835-41. PubMed ID: 22924498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking the environmental performance of the Jatropha biodiesel system through a generic life cycle assessment.
    J A; W M J A; M P D; B M; B M
    Environ Sci Technol; 2011 Jun; 45(12):5447-53. PubMed ID: 21591673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.